Feynman’s Preface

These arc the lectures in physics that 1 gave last year and the year before to the
freshman and sophomore classes at Caltech. The lectures are, of course, not
verbatim—they have been edited, sometimes extensively and sometimes less so.
The lectures form only part of the complete course. The whole group of 180
students gathered in a big lecture room twice a week to hear these lectures and
then they broke up into small groups of 15 to 20 students in recitation sections
under the guidance of a teaching assistant. In addition, there was a laboratory
session once a week.

The special problem we tried to get at with these lectures was to maintain the
interest of the very enthusiastic and rather smart students coming out of the high
schools and into Caltech. They have heard a lot about how interesting and excit-
ing physics is-—the theory of relativity, quantum mechanics, and other modern
ideas. By the end of two years of our previous course, many would be very dis-
couraged because there were really very few grand, new, modern ideas presented
to them. They were made to study inclined planes, electrostatics, and so forth.
and after two years it was quite stultifying. The problem was whether or not we
could make a course which would save the more advanced and excited student by
maintaining his enthusiasm.

The lectures here are not in any way meant to be a survey course, but are very
serious. | thought to address them to the most intelligent in the class and to make
sure, if possible, that even the most intelligent student was unable to completely
encompass everything that was in the lectures—by putting in suggestions of appli-
cations of the ideas and concepts in various directions outside the main line of
attack. For this reason, though, I tried very hard to make all the statements as
accurate as possible, to point out in every case where the equations and ideas fitted
into the body of physics, and how—when they learned more—things would be
modified. 1 also felt that for such students it is important to indicate what it is
that they should—if they are sufficiently clever—be able to understand by deduc-
tion from what has been said before, and what is being put in as something new.
When new ideas came in, I would try either to deduce them if they were deducible,
or to explain that it was a new idea which hadn’t any basis in terms of things they
had already tearned and which was not supposed to be provable—but was just
added in.

At the start of these lectures, I assumed that the students knew something when
they came out of high school—such things as geometrical optics, simple chemistry
ideas, and so on. 1 also didn’t see that there was any reason to make the lectures
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Foreword

A great triumph of twentieth-century physics, the theory of quantum mechanics,
is now nearly 40 years old, yet we have generally been giving our students their
introductory course in physics (for many students, their last) with hardly more
than a casual allusion to this central part of our knowledge of the physical world.
We should do better by them. These lectures are an attempt to present them with
the basic and essential ideas of the quantum mechanics in a way that would,
hopefully, be comprehensible. The approach you will find here is novel, particu-
larly at the level of a sophomore course, and was considered very much an experi-
ment. After seeing how easily some of the students take to it, however, I believe
that the experiment was a success. There is, of course, room for improvement,
and it will come with more experience in the classroom. What you will find here
is a record of that first experiment.

In the two-year sequence of the Feynman Lectures on Physics which were given
from September 1961 through May 1963 for the introductory physics course at
Caltech, the concepts of quantum physics were brought in whenever they were
necessary for an understanding of the phenomena being described. In addition,
the last twelve lectures of the second year were given over to a more coherent
introduction to some of the concepts of quantum mechanics. It became clear as
the lectures drew to a close, however, that not enough time had been left for the
quantum mechanics. As the material was prepared, it was continually discovered
that other important and interesting topics could be treated with the elementary
tools that had been developed. There was also a fear that the too brief treatment
of the Schrodinger wave function which had been included in the twelfth lecture
would not provide a sufficient bridge to the more conventional treatments of many
books the students might hope to read. It was therefore decided to extend the
series with seven additional lectures; they were given to the sophomore class in
May of 1964. These lectures rounded out and extended somewhat the material
developed in the earlier lectures.

In this volume we have put together the lectures from both years with some
adjustment of the sequence. In addition, two lectures originally given to the fresh-
man class as an introduction to quantum physics have been lifted bodily from
Volume I (where they were Chapters 37 and 38) and placed as the first two chapters
here—to make this volume a self-contained unit, relatively independent of the
first two. A few ideas about the quantization of angular momentum (including a
discussion of the Stern-Gerlach experiment) had been introduced in Chapters 34
and 35 of Volume II, and familiarity with them is assumed; for the convenience
of those who will not have that volume at hand, those two chapters are reproduced
here as an Appendix.

This set of lectures tries to elucidate from the beginning those features of the
quantum mechanics which are most basic and most general. The first lectures
tackle head on the ideas of a probability amplitude, the interference of amplitudes,
the abstract notion of a state, and the superposition and resolution of states—and
the Dirac notation is used from the start. In each instance the ideas are introduced
together with a detailed discussion of some specific examples—to try to make the
physical ideas as real as possible. The time dependence of states including states
of definite energy comes next, and the ideas are applied at once to the study of
two-state systems. A detailed discussion of the ammonia maser provides the frame-
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work for the introduction to radiation absorption and induced transitions. The
lectures then go on to consider more complex systems, leading to a discussion of
the propagation of electrons in a crystal, and to a rather complete treatment of the
quantum mechanics of angular momentum. Our introduction to quantum me-
chanics ends in Chapter 20 with a discussion of the Schrodinger wave function.
its differential equation, and the solution for the hydrogen atom.

The last chapter of this volume is not intended to be a part of the “course.
It is a “seminar’ on superconductivity and was given in the spirit of some of the
entertainment lectures of the first two volumes, with the intent of opening to the
students a broader view of the relation of what they were learning to the general
culture of physics. Feynman’s “epilogue” serves as the period to the three-
volume series.

As explained in the Foreword to Volume I, these lectures were but one aspect
of a program for the development of a new introductory course carried out at the
California Institute of Technology under the supervision of the Physics Course
Revision Committee (Robert Leighton, Victor Neher, and Matthew Sands). The
program was made possible by a grant from the Ford Foundation. Many people
helped with the technical details of the preparation of this volume: Marylou
Clayton, Julie Curcio, James Hartle, Tom Harvey, Martin Israel, Patricia Preuss,
Fanny Warren, and Barbara Zimmerman. Professors Gerry Neugebauer and
Charles Wilts contributed greatly to the accuracy and clarity of the material by
reviewing carefully much of the manuscript.

But the story of quantum mechanics you wilk find here is Richard Feynman’s.
Our labors will have been well spent if we have been able to bring to others even
some of the intellectual excitement we experienced as we saw the ideas unfold in
his real-life Lectures on Physics.

December, 1964 MATTHEW SANDS
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Quantum Behavior

1-1 Atomic mechanics

“Quantum mechanics” is the description of the behavior of matter and light
in all its details and, in particular, of the happenings on an atomic scale. Things
on a very small scale behave like nothing that you have any direct experience
about. They do not behave like waves, they do not behave like particles, they do
not behave like clouds, or billiard balls, or weights on springs, or like anything
that you have ever seen.

Newton thought that light was made up of particles, but then it was discovered
that it behaves like a wave. Later, however (in the beginning of the twentieth
century), it was found that light did indeed sometimes behave like a particle.
Historically, the electron, for example, was thought to behave like a particle, and
then it was found that in many respects it behaved like a wave. So it really behaves
like neither. Now we have given up. We say: “It is like neither.”

There is one lucky break, however—electrons behave just like light. The
quantum behavior of atomic objects (electrons, protons, neutrons, photons, and
so on) is the same for all, they are all “particle waves,” or whatever you want to
call them. So what we learn about the properties of electrons (which we shall use
for our examples) will apply also to all “particles,” including photons of light.

The gradual accumulation of information about atomic and small-scale be-
havior during the first quarter of this century, which gave some indications about
how small things do behave, produced an increasing confusion which was finally
resolved in 1926 and 1927 by Schrddinger, Heisenberg, and Born. They finally
obtained a consistent description of the behavior of matter on a small scale. We
take up the main features of that description in this chapter.

Because atomic behavior is so unlike ordinary experience, it is very difficult
to get used to, and it appears peculiar and mysterious to everyone—both to the
novice and to the experienced physicist. Even the experts do not understand it
the way they would like to, and it is perfectly reasonable that they should not,
because all of direct, human experience and of human intuition applies to large
objects. We know how large objects will act, but things on a small scale just do
not act that way. So we have to learn about them in a sort of abstract or imagi-
native fashion and not by connection with our direct experience.

In this chapter we shall tackle immediately the basic element of the mysterious
behavior in its most strange form. We choose to examine a phenomenon which is
impossible, absolutely impossible, to explain in any classical way, and which has
in it the heart of quantum mechanics. In reality, it contains the only mystery.
We cannot make the mystery go away by “explaining” how it works. We will just
tell you how it works. In telling you how it works we will have told you about the
basic peculiarities of all quantum mechanics.

1-2 An experiment with bullets

To try to understand the quantum behavior of electrons, we shall compare
and contrast their behavior, in a particular experimental setup, with the more
familiar behavior of particles like bullets, and with the behavior of waves like
water waves. We consider first the behavior of bullets in the experimental setup
shown diagrammatically in Fig. 1-1. We have a machine gun that shoots a stream
of bullets. 1t is not a very good gun, in that it sprays the bullets (randomly) over a
fairly large angular spread, as indicated in the figure. In front of the gun we have
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Fig. 1-1.
with bullets.

Interference

experiment

a wall (made of armor plate) that has in it two holes just about big enough to let a
bullet through. Beyond the wall is a backstop (say a thick wall of wood) which will
“absorb” the bullets when they hit it. In front of the wall we have an object which
we shall call a “detector” of bullets. 1t might be a box containing sand. Any bullet
that enters the detector will be stopped and accumulated. When we wish, we can
empty the box and count the number of bullets that have becn caught. The
detector can be moved back and forth (in what we will call the x-direction). With
this apparatus, we can find out experimentally the answer to the question: “What
is the probability that a bullet which passes through the holes in the wall will
arrive at the backstop at the distance x from the center?” First, you should
realize that we should talk about probability, because we cannot say definitely
where any particular bullet will go. A bullet which happens to hit one of the holes
may bounce off the edges of the hole, and may end up anywhere at all. By “prob-
ability”” we mean the chance that the bullet will arrive at the detector, which we can
measure by counting the number which arrive at the detector in a certain time and
then taking the ratio of this number to the foral number that hit the backstop during
that time. Or, if we assume that the gun always shoots at the same rate during the
measurements, the probability we want is just proportional to the number that
reach the detector in some standard time interval.
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For our present purposes we would like to imagine a somewhat idealized
experiment in which the bullets are not real bullets, but are indestructible bullets—
they cannot break in half. In our experiment we find that bullets always arrive in
lumps, and when we find something in the detector, it is always one whole bullet.
If the rate at which the machine gun fires is made very low, we find that at any given
moment either nothing arrives, or one and only one—exactly one—builet arrives
at the backstop. Also, the size of the lump certainly does not depend on the rate
of firing of the gun. We shall say: **Bullets a/ways arrive in identical lumps.” What
we measure with our detector is the probability of arrival of a lump. And we meas-
ure the probability as a function of x. The result of such measurements with this
apparatus (we have not yet done the experiment, so we are really imagining the
result) are plotted in the graph drawn in part (¢) of Fig. 1-1. In the graph we plot
the probability to the right and x vertically, so that the x-scale fits the diagram of
the apparatus. We call the probability £, because the bullets may have come
either through hole 1 or through hole 2. You will not be surprised that P, is
large pear the middle of the graph but gets small if x is very large. You may
wondert, however, why P, has its maximum value at x = 0. We can understand
this fact if we do our experiment again after covering up hole 2, and once more
while covering up hole 1. When hole 2 is covered, bullets can pass only through
hole 1, and we get the curve marked P, in part (b) of the figure. As you would
expect, the maximum of Py occurs at the value of x which is on a straight line with
the gun and hole 1. When hole 1 is closed, we get the symmetric curve £, drawn
in the figure. P, is the probability distribution for bullets that pass through hole
2. Comparing parts (b) and (c) of Fig. 1-1, we find the important result that

Pio = Py + Ps (.1



The probabilities just add together. The effect with both holes open is the sum of
the effects with each hole open alone. We shall call this result an observation of
“no interference,” for a reason that you will see later. So much for bullets. They
come in lumps, and their probability of arrival shows no interference.

1-3 An experiment with waves

Now we wish to consider an experiment with water waves. The apparatus is
shown diagrammatically in Fig. 1-2. We have a shallow trough of water. A small
object labeled the “wave source” is jiggled up and down by a motor and makes
circular waves. To the right of the source we have again a wall with two holes,
and beyond that is a second wall, which, to keep things simple, is an “absorber,”
so that there is no reflection of the waves that arrive there. This can be done by
building a gradual sand “beach.” In front of the beach we place a detector which
can be moved back and forth in the x-direction, as before. The detector is now a
device which measures the “intensity” of the wave motion. You can imagine a
gadget which measures the height of the wave motion, but whose scale is calibrated
in proportion to the square of the actual height, so that the reading is proportional
to the intensity of the wave. Our detector reads, then, in proportion to the energy
being carried by the wave—or rather, the rate at which energy is carried to the
detector.
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With our wave apparatus, the first thing to notice is that the intensity can
have any size. If the source just moves a very small amount, then there is just a
little bit of wave motion at the detector. When there is more motion at the source,
there is more intensity at the detector. The intensity of the wave can have any
value at all. We would not say that there was any “lumpiness” in the wave intensity.

Now let us measure the wave intensity for various values of x (keeping the
wave source operating always in the same way). We get the interesting-looking
curve marked [ in part (c¢) of the figure.

We have already worked out how such patterns can come about when we
studied the interference of electric waves in Volume I. In this case we would
observe that the original wave is diffracted at the holes, and new circular waves
spread out from each hole. If we cover one hole at a time and measure the intensity
distribution at the absorber we find the rather simple intensity curves shown in part
(b) of the figure. I, is the intensity of the wave from hole 1 (which we find by
measuring when hole 2 is blocked off) and I, is the intensity of the wave from hole
2 (seen when hole 1 is blocked).

The intensity 7, , observed when both holes are open is certainly not the sum
of I, and I,. We say that there is “interference” of the two waves. At some places
(where the curve I, has its maxima) the waves are “in phase” and the wave
peaks add together to give a large amplitude and, therefore, a large intensity. We
say that the two waves are “interfering constructively” at such places. There will
be such constructive interference wherever the distance from the detector to one
hole is a whole number of wavelengths larger (or shorter) than the distance from
the detector to the other hole.

1-3
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Fig. 1-3.
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At those places where the two waves arrive at the detector with a phase differ-
ence of = (where they are ‘““out of phase™) the resulting wave motion at the detector
will be the difference of the two amplitudes. The waves “interfere destructively,”
and we get a Jow value for the wave intensity. We expect such low values wherever
the distance between hole 1 and the detector is different from the distance between
hole 2 and the detector by an odd number of half-wavelengths. The low values of
112 in Fig. 1-2 correspond to the places where the two waves interfere destructively.

You will remember that the quantitative relationship between /1. /., and /,,
can be expressed in the following way: The instantaneous height of the water wave
at the detector for the wave from hole 1 can be written as (the real part of) /107,
where the “amplitude” /i, is, in general, a complex number. The intensity is
proportional to the mean squared height or, when we use the complex numbers,
to the absolute value squared |4 |2 Similarly, for hole 2 the height is /,¢™! and the
intensity is proportional to |As(*. When both holes are open, the wave heights
add to give the height(4, + /3)e™’ and the intensity |7, + /A% Omitting the
constant of proportionality for our present purposes, the proper relations for
interfering waves are

Iy = |hq|?, Iy = |hs), Iy = |hy + hol® (1.2)

You will notice that the result is quite different from that obtained with bullets
(Eq. I-1). 1f we expand |/i; + /5|? we see that

[y 4 hol® = [h]® + [ha]® + 2|k cos 5, (1.3)

where 6 is the phase difference between /4; and h,. In terms of the intensities, we
could write
112=1]+12+2\/1112C086. (]4)

The last term in (1.4) is the “interference term.” So much for water waves. The
intensity can have any value, and it shows interference.

1-4 An experiment with electrons

Now we imagine a similar experiment with electrons. It is shown diagram-
matically in Fig. 1-3. We make an electron gun which consists of a tungsten wire
heated by an electric current and surrounded by a metal box with a hole in it. If
the wire is at a negative voltage with respect to the box, electrons emitted by the
wire will be accelerated toward the walls and some will pass through the hole.
All the electrons which come out of the gun will have (nearly) the same energy.
In front of the gun is again a wall (just a thin metal plate) with two holes in it.
Beyond the wall is another plate which will serve as a “backstop.” In front of the
backstop we place a movable detector. The detector might be a geiger counter or,
perhaps better, an electron multiplier, which is connected to a loudspeaker.

We should say right away that you should not try to set up this experiment
(as you could have done with the two we have already described). This experiment
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has never been done in just this way. The trouble is that the apparatus would have
to be made on an impossibly small scale to show the effects we are interested in.
We are doing a “thought experiment,” which we have chosen because it is easy to
think about. We know the results that would be obtained because there are many
experiments that have been done, in which the scale and the proportions have
been chosen to show the effects we shall describe.

The first thing we notice with our electron experiment is that we hear sharp
“clicks™ from the detector (that is, from the loudspeaker). And all *““clicks™ are
the same. There are no “half-clicks.”

We would also notice that the “clicks” come very erratically. Something like:
click..... click-click . . .click........ click ....click-click ...... click...,
etc., just as you have, no doubt, heard a geiger counter operating. If we count
the clicks which arrive in a sufficiently long time—say for many minutes—and
then count again for another equal period, we find that the two numbers are very
nearly the same. So we can speak of the average rate at which the clicks are heard
(so-and-so-many clicks per minute on the average).

As we move the detector around, the rate at which the clicks appear is faster
or slower, but the size (loudness) of each click is always the same. If we lower the
temperature of the wire in the gun, the rate of clicking slows down, but still each
click sounds the same. We would notice also that if we put two separate detectors
at the backstop, one or the other would click, but never both at once. (Except that
once in a while, if there were two clicks very close together in time, our ear might
not sense the separation.) We conclude, therefore, that whatever arrives at the
backstop arrives in “lumps.” All the “lumps” are the same size: only whole
“lumps” arrive, and they arrive one at a time at the backstop. We shall say:
“Electrons always arrive in identical lumps.”

Just as for our experiment with bullets, we can now proceed to find experi-
mentally the answer to the question: “What is the relative probability that an
electron ‘lump’ will arrive at the backstop at various distances x from the center?”
As before, we obtain the relative probability by observing the rate of clicks, holding
the operation of the gun constant. The probability that lumps will arrive at a
particular x is proportional to the average rate of clicks at that x.

The result ©f our experiment is the interesting curve marked Py, in part (c)
of Fig. 1-3. Yes! That is the way electrons go.

1-5 The interference of electron waves

Now let us try to analyze the curve of Fig. 1-3 to see whether we can under-
stand the behavior of the electrons. The first thing we would say is that since they
come in lumps, each lump, which we may as well call an electron, has come either
through hole 1 or through hole 2. Let us write this in the form of a “Proposition™:

Proposition A: Each electron either goes through hole 1 or it goes through
hole 2.

Assuming Propositon A, all electrons that arrive at the backstop can be di-
vided into two classes: (1) those that come through hole 1, and (2) those that come
through hole 2. So our observed curve must be the sum of the effects of the elec-
trons which come through hole 1 and the electrons which come through hole 2.
Let us check this idea by experiment. First, we will make a measurement for those
electrons that come through hole 1. We block off hole 2 and make our counts of
the clicks from the detector. From the clicking rate, we get P;. The result of the
measurement is shown by the curve marked P, in part (b) of Fig. 1-3. The result
seems quite reasonable. In a similar way, we measure Ps, the probability distribu-
tion for the electrons that come through hole 2. The result of this measurement
is also drawn in the figure.

The result P, obtained with both holes open is clearly not the sum of P, and
P, the probabilities for each hole alone. In analogy with our water-wave experi-
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ment, we say: “There is interference.”
For electrons: Pio # Py + Po. (1.5)

How can such an interference come about? Perhaps we should say: “Well,
that means, presumably, that it is not true that the lumps go either through hole
I or hole 2, because if they did, the probabilities should add. Perhaps they go in a
more complicated way. They split in half and .. » But no! They cannot, they
always arrive in lumps ... “Well, perhaps some of them go through I, and then
they go around through 2, and then around a few more times, or by some other
complicated path .  then by closing hole 2, we changed the chance that an elec-
tron that started out through hole 1 would finally get (o the backstop 7 But
notice! There are some points at which very few electrons arrive when both holes
are open, but which receive many electrons if we close one hole. so closing one
hole increased the number from the other. Notice, however, that at the center
of the pattern, P, 5 is more than twice as large as Py + P,. Itisas though closing
one hole decreased the number of electrons which come through the other hole.
It seems hard to explain both effects by proposing that the electrons travel in
complicated paths.

It is all quite mysterious. And the more you look at it the more mysterious
it seems. Many ideas have been concocted to try to explain the curve for Py, in
terms of individual electrons going around in complicated ways through the holes.
None of them has succeeded. None of them can get the right curve for Py, in
terms of Py and P,.

Yet, surprisingly enough, the marhematics for relating Py and P, Jo P, is
extremely simple. For £, is just like the curve /;5 of Fig. 1-2, and thar was
simple. What is going on at the backstop can be described by two complex numbers
that we can call ¢, and ¢, (they are functions of x, of course). The absolute square
of ¢ gives the cffect with only hole 1 open. That is, Py = |¢1]® The cflect with
only hole 2 open is given by ¢, in the same way. Thatis, Py, = [¢5|2 And the
combined effect of the two holes is Just Py = |p; + ¢u|2  The marhematics
is the same as that we had for the water waves! (It is hard to see how one could
get such a simple result from a complicated game of electrons going back and forth
through the plate on some strange trajectory.)

We conclude the following: The electrons arrive in lumps, like particles, and
the probability of arrival of these lumps is distributed like the distribution of
intensity of a wave. It is in this sense that an electron behaves “sometimes like a
particle and sometimes like a wave.”

Incidentally, when we were dealing with classical waves we defined the in-
tensity as the mean over time of the square of the wave amplitude, and we used
complex numbers as a mathematical trick to simplify the analysis. But in quantum
mechanics it turns out that the amplitudes must be represented by complex num-
bers. The real parts alone will not do. That is a technical point, for the moment,
because the formulas look just the same.

Since the probability of arrival through both holes is given so simply, although
itis not equal to (P, + P,), that is really all there is to say. But there are a large
number of subtleties involved in the fact that nature does work this way. We
would like to illustrate some of these subtleties for you now. First, since the num-
ber that arrives at a particular point is not equal to the number that arrives through
I plus the number that arrives through 2. as we would have concluded from
Proposition A, undoubtedly we should conclude that Proposition A is fulse. 1t is
not true that the electrons go eit/er through hole 1 or hole 2. But that conclusion
can be tested by another experiment.

1-6 Watching the electrons

We shall now try the following experiment. To our electron apparatus we
add a very strong light source, placed behind the wall and between the {wo holes,
as shown in Fig. 1-4. We know that electric charges scatter light. So when an
1-6



ELECTRON
GUN

1 _pf ’
R =R +%

(a) (b) (c)

electron passes, however it does pass, on its way to the detector, it will scatter some
light to our eye, and we can see where the electron goes. If, for instance, an electron
were to take the path via hole 2 that is sketched in Fig. 1-4, we should see a flash
of light coming from the vicinity of the place marked A in the figure. If an electron
passes through hole 1, we would expect to see a flash from the vicinity of the upper
hole. If it should happen that we get light from both places at the same time,
because the electron divides in half ... Let us just do the experiment!

Here is what we see: every time that we hear a “click” from our electron de-
tector (at the backstop), we also sce a flash of light either near hole 1 or near hole
2. but never both at once! And we observe the same result no matter where we put
the detector. From this observation we conclude that when we look at the electrons
we find that the electrons go either through one hole or the other. Experimentally,
Proposition A is necessarily true.

What, then, is wrong with our argument against Proposition A? Why isn’t
P o justequal to Py + P»? Back to experiment! Let us keep track of the electrons
and find out what they are doing. For each position (x-location) of the detector
we will count the electrons that arrive and also keep track of which hole they went
through, by watching for the flashes. We can keep track of things this way:
whenever we hear a “click” we will put a count in Column 1 if we see the flash near
hole 1, and if we see the flash near hole 2, we will record a count in Column 2.
Every electron which arrives is recorded in one of two classes: those which come
through 1 and those which come through 2. From the number recorded in Column
1 we get the probability P; that an electron will arrive at the detector via hole 1;
and from the number recorded in Column 2 we get Pj, the probability that an
eléctron will arrive at the detector via hole 2. If we now repeat such a measurement
for many values of x, we get the curves for P{ and P; shown in part (b) of Fig. 1-4.

Well, that is not too surprising! We get for Pj something quite similar to
what we got before for P, by blocking off hole 2; and P} is similar to what we got
by blocking hole 1. So there is not any complicated business like going through
both holes. When we watch them, the electrons come through just as we would
expect them to come through. Whether the holes are closed or open, those which
we see come through hole 1 are distributed in the same way whether hole 2 is open
or closed.

But wait! What do we have now for the roral probability, the probability that
an electron will arrive at the detector by any route? We already have that informa-
tion. We just pretend that we never looked at the light flashes, and we lump to-
gether the detector clicks which we have separated into the two columns. We
must just add the numbers. For the probability that an electron will arrive at the
backstop by passing through either hole, we do find Pi, = P; + P,. That is,
although we succeeded in watching which hole our electrons come through, we
no longer get the old interference curve Py, but a new one, P{,, showing no
interference! If we turn out the light Py, is restored.

We must conclude that when we look at the electrons the distribution of them
on the screen is different than when we do not look. Perhaps it is turning on our
light source that disturbs things? 1t must be that the electrons are very delicate,
and the light, when it scatters off the electrons, gives them a jolt that changes their
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motion. We know that the electric field of the light acting on a charge will exert
a force on it. So perhaps we should expect the motion to be changed. Anyway,
the light exerts a big influence on the electrons. By trying to “watch” the electrons
we have changed their motions. That is, the jolt given to the electron when the
photon is scattered by it is such as to change the electron’s motion enough so that
if it might have gone to where P, was at a maximum it will instead land wherc
P, was a minimum; that is why we no longer see the wavy interference effects.

You may be thinking: “Don’t use such a bright source! Turn the brightness
down! The light waves will then be weaker and will not disturb the electrons so
much. Surely, by making the light dimmer and dimmer, eventually the wave
will be weak enough that it will have a negligible effect.” O.K. Let’s try it. The
first thing we observe is that the flashes of light scattered from the electrons as
they pass by does not get weaker. 11 is always the same-sized flash. The only thing
that happens as the light is made dimmer is that sometimes we hear a “click”
from the detector but see no flush at all. The electron has gone by without being
“seen.” What we are observing is that light also acts like electrons, we knew that
it was “‘wavy,” but now we find that it is also “lumpy.” 1t always arrives—or is
scattered—in lumps that we call “photons.” As we turn down the infensity of
the light source we do not change the size of the photons, only the rate at which
they are emitted. That explains why, when our source is dim, some clectrons get
by without being seen. There did not happen to be a photon around at the time
the electron went through.

This is all a little discouraging. If it is true that whenever we ““see” the electron
we see the same-sized flash. then those electrons we see are always the disturbed
ones. Let us try the experiment with a dim light anyway. Now whenever we hear
a click in the detector we will keep a count in three columns: in Column (1) those
electrons seen by hole 1, in Column (2) those electrons seen by hole 2, and in
Column (3) those electrons not seen at all. When we work up our data (computing
the probabilities) we find these results: Those “‘seen by hole I”” have a distribution
like P1; those “‘seen by hole 2” have a distribution like Pj (so that those “seen by
either hole 1 or 2" have a distribution like Pj,): and those “not seen at all’” have a
“wavy”’ distribution just like Pyy of Fig. 1-3' [f the electrons are not seen, we
have interference!

That is understandable. When we do not see the electron, no photon disturbs
it, and when we do see it, a photon has disturbed it. There is always the same
amount of disturbance because the light photons all produce the same-sized effects
and the effect of the photons being scattered is enough to smear out any inter-
ference effect.

[s there not some way we can see the electrons without disturbing them?
We learned in an earlier chapter that the momentum carried by a “photon”
is inversely proportional to its wavelength (p = A/)\). Certainly the jolt given
to the electron when the photon is scattered toward our eye depends on the
momentum that photon carries. Aha! 1f we want to disturb the electrons only
slightly we should not have lowered the intensity of the light, we should have
lowered its frequency (the same as increasing its wavelength). Let us use light of
a redder color. We could even use infrared light, or radiowaves (like radar), and
‘“‘see”” where the electron went with the help of some equipment that can “see”
light of these longer wavelengths. If we use “gentler™ light perhaps we can avoid
disturbing the electrons so much.

Let us try the experiment with Jonger waves. We shall keep repeating our ex-
periment, each time with light of a longer wavelength. At first, nothing seems to
change. The results are the same. Then a terrible thing happens. You remember
that when we discussed the microscope we pointed out that, due to the wave nature
of the light, there is a limitation on how close two spots can be and still be seen
as two separate spots. This distance is of the order of the wavelength of light. So
now, when we make the wavelength longer than the distance between our holes,
we see a big fuzzy flash when the light is scattered by the electrons. We can no
longer tell which hole the electron went throught We just know it went somewhere!
And it is just with light of this color that we find that the jolts given to the electron
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are small enough so that P{, begins to look like P,,—that we begin to get some
interference effect. And it is only for wavelengths much longer than the separation
of the two holes (when we have no chance at all of telling where the electron went)
that the disturbance due to the light gets sufficiently small that we again get the
curve Py, shown in Fig. 1-3.

In our experiment we find that it is impossible to arrange the light in such a
way that one can tell which hole the electron went through, and at the same time
not disturb the pattern. It was suggested by Heisenberg that the then new laws of
nature could only be consistent if there were some basic limitation on our experi-
mental capabilities not previously recognized. He proposed, as a general principle,
his uncertainty principle, which we can state in terms of our experiment as follows:
“It is impossible to design an apparatus to determine which hole the electron passes
through, that will not at the same time disturb the electrons enough to destroy the
interference pattern.” If an apparatus is capable of determining which hole the
electron goes through, it cannot be so delicate that it does not disturb the pattern in
an essential way. No one has ever found (or even thought of) a way around the
uncertainty principle. So we must assume that it describes a basic characteristic
of nature.

The complete theory of quantum mechanics which we now use to describe
atoms and, in fact, all matter, depends on the correctness of the uncertainty prin-
ciple. Since quantum mechanics is such a successful theory, our belief in the
uncertainty principle is reinforced. But if a way to “beat” the uncertainty principle
were ever discovered, quantum mechanics would give inconsistent results and
would have to be discarded as a valid theory of nature.

“Well,”” you say, “what about Proposition A? [s it true, or is it not true,
that the electron either goes through hole 1 or it goes through hole 2?” The only
answer that can be given is that we have found from experiment that there is a
certain special way that we have to think in order that we do not get into incon-
sistencies. What we must say (to avoid making wrong predictions) is the following.
If one looks at the holes or, more accurately, if one has a piece of apparatus which
is capable of determining whether the electrons go through hole 1 or hole 2, then
one can say that it goes either through hole 1 or hole 2. Buz, when one does not
try to tell which way the electron goes, when there is nothing in the experiment to
disturb the electrons, then one may not say that an electron goes either through
hole 1 or hole 2. 1f one does say that, and starts to make any deductions from the
statement, he will make errors in the analysis. This is the logical tightrope on
which we must walk if we wish to describe nature successfully.

If the motion of all matter—as well as electrons—must be described in terms
of waves, what about the bullets in our first experiment? Why didn’t we see an
interference pattern there? It turns out that for the bullets the wavelengths were so
tiny that the interference patterns became very fine. So fine, in fact, that with any
detector of finite size one could not distinguish the separate maxima and minima.
What we saw was only a kind of average, which is the classical curve. In Fig. 1-5
we have tried to indicate schematically what happens with large-scale objects.
Part (a) of the figure shows the probability distribution one might predict for
bullets, using quantum mechanics. The rapid wiggles are supposed to represent
the interference pattern one gets for waves of very short wavelength. Any physical
detector, however, straddles several wiggles of the probability curve, so that the
measurements show the smooth curve drawn in part (b) of the figure.

1-7 First principles of quantum mechanics

We will‘now write a summary of the main conclusions of our experiments.
We will, however, put the results in a form which makes them true for a general
class of such experiments. We can write our summary more simply if we first
define an “ideal experiment” as one in which there are no uncertain external
influences, i.e., no jiggling or other things going on that we cannot take into ac-
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count. We would be quite precise if we said: “An ideal experiment is one in which
all of the initial and final conditions of the experiment are completely specified.”
What we will call “an event” is, in general, just a specific set of initial and final
conditions. (For example: “an electron leaves the gun, arrives at the detector, and
nothing else happens.””) Now for our summary.

SUMMARY

(1) The probability of an event in an ideal experiment is given by the square of
the absalute value of a complex number ¢ which is called the probability

amplitude:
P = probability,
¢ = probability amplitude, (1.6)
P = lo|*

(2) When an event can occur in several alternative ways, the probability ampli-
tude for the event is the sum of the probability amplitudes for each way
considered separately. There is interference:

¢ = ¢1 + ¢25
P = g1 + ¢o|? (L.7)

(3) If an experiment is performed which is capable of determining whether one or
another alternative is actually taken, the probability of the event is the sum
of the probabilities for each alternative. The interference is lost:

One might still like to ask: “How does it work? What is the machinery behind
the law?” No one has found any machinery behind the law. No one can “explain”
any more than we have just “explained.” No one will give you any deeper repre-
sentation of the situation. We have no ideas about a more basic mechanism from
which these results can be deduced.

We would like to emphasize a very important difference between classical and
quantum mechanics. We have been talking about the probability that an electron
will arrive in a given circumstance. We have implied that in our experimental
arrangement (or even in the best possible one) it would be impossible to predict
exactly what would happen. We can only predict the odds! This would mean, if
it were true, that physics has given up on the problem of trying to predict exactly
what will happen in a definite circumstance. Yes! physics has given up. We do
not know how to predict what would happen in a given circumstance. and we believe
now that it is impossible—that the only thing that can be predicted is the prob-
ability of different events. It must be recognized that this is a retrenchment in our
earlier ideal of understanding nature. It may be a backward step, but no one
has seen a way to avoid it.

We make now a few remarks on a suggestion that has sometimes been made
to try to avoid the description we have given: *“Perhaps the electron has some kind
of internal works—some inner variables—that we do not yet know about. Perhaps
that is why we cannot predict what will happen. If we could look more closely at
the electron, we could be able to tell where it would end up.” So far as we know,
that is impossible. We would still be in difficulty. Suppose we were to assume that
inside the electron there is some kind of machinery that determines where it is
going to end up. That machine must also determine which hole it is going Lo go
through on its way. But we must not forget that what is inside the electron should
not be dependent on what we do, and in particular upon whether we open or close
one of the holes. So if an electron, before it starts, has already made up its mind
(a) which hole it is going to use, and (b) where it is going to land, we should find
P for those electrons that have chosen-hole 1, P, for those that have chosen hole
2, and necessarily the sum P, + P, for those that arrive through the two holes.
There seems to be no way around this. But we have verified experimentally that
that is not the case. And no one has figured a way out of this puzzle. So at the
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present time we must limit ourselves to computing probabilities. We say “at the
present time,” but we suspect very strongly that it is something that will be with
us forever—that it is impossible to beat that puzzle—that this is the way nature
really is.

1-8 The uncertainty principle

This is the way Heisenberg stated the uncertainty principle originally: If you
make the measurement on any object, and you can determine the x-component of
its momentum with an uncertainty Ap, you cannot, at the same time, know its
x-position more accurately than Ax = A/Ap, where A is a definite fixed number
given by nature. It is called “Planck’s constant,” and is approximately 6.63 X
1073% joule-seconds. The uncertainties in the position and momentum of a
particle at any instant must have their product greater than Planck’s constant.
This is a special case of the uncertainty principle that was stated above more
generally. The more general statement was that one cannot design equipment in
any way to determine which of two alternatives is taken, without, at the same
time, destroying the pattern of interference.

Let us show for one particular case that the kind of relation given by Heisen-
berg must be true in order to keep from getting into trouble. We imagine a modifi-
cation of the experiment of Fig. 1-3, in which the wall with the holes consists of a
plate mounted on rollers so that it can move freely up and down (in the x-direction),
as shown in Fig. 1-6. By watching the motion of the plate carefully we can try to
tell which hole an electron goes through. Imagine what happens when the detector
is placed at x = 0. We would expect that an electron which passes through hole 1
must be deflected downward by the plate to reach the detector. Since the vertical
component of the electron momentum is changed, the plate must recoil with an
equal momentum in the opposite direction. The plate will get an upward kick.
If the electron goes through the lower hole, the plate should feel a downward kick.
It is clear that for every position of the detector, the momentum received by the
plate will have a different value for a traversal via hole 1 than for a traversal via
hole 2. So! Without disturbing the electrons at all, but just by watching the plate,
we can tell which path the electron used.

Now in order to do this it is necessary to know what the momentum of the
screen is, before the electron goes through. So when we measure the momentum
after the electron goes by, we can figure out how much the plate’s momentum has
changed. But remember, according to the uncertainty principle we cannot at the
same time know the position of the plate with an arbitrary accuracy. But if we do
not know exactly where the plate is, we cannot say precisely where the two holes are.
They will be in a different place for every electron that goes through. This means
that the center of our interference pattern will have a different location for each
electron. The wiggles of the interference pattern will be smeared out. We shall show
quantitatively in the next chapter that if we determine the momentum of the plate
sufficiently accurately to determine from the recoil measurement which hole was
used, then the uncertainty in the x-position of the plate will, according to the un-
certainty principle, be enough to shift the pattern observed at the detector up and
down in the x-direction about the distance from a maximum to its nearest minimum.
Such a random shift is just enough to smear out the pattern so that no interference
is observed.

The uncertainty principle “protects” quantum mechanics. Heisenberg recog-
nized that if it were possible to measure the momentum and the position simultane-
ously with a greater accuracy, the quantum mechanics would collapse. So he
proposed that it must be impossible. Then people sat down and tried to figure out
ways of doing it, and nobody could figure out a way to measure the position and
the momentum of anything—a screen, an electron, a billiard ball, anything—with
any greater accracy. Quantum mechanics maintains its perilous but still correct
existence.

dAOROLLERS
2 7
<jor,
-7 ar B DETEGTOR
Ll T T~ DE
3 &FEo _a_ _ —\:\E
R RN —
LECTRON >3~ 7 —p= 7
£ E(L:JN ~ H72 Py
ap,
MOTION FREE } R /
¢
JProLLERS
WALL BACKSTOP
Fig. 1-6. An experiment in which

the recoil of the wall is measured.



2

The Relation of Wave and
Particle Viewpoinis

2-1 Probability wave amplitudes

In this chapter we shall discuss the relationship of the wave and particle
viewpoints. We already know, from the last chapter, that neither the wave view-
point nor the particle viewpoint is correct. We would always like to present things
accurately, or at least precisely enough that they will not have to be changed when
we learn more—it may be extended, but it will not be changed! But when we try
to talk about the wave picture or the particle picture, both are approximate, and
both will change. Therefore what we learn in this chapter will not be accurate in a
certain sense; we will deal with some half-intuitive arguments which will be made
more precise later. But certain things will be changed a little bit when we interpret
them correctly in quantum mechanics. We are doing this so that you can have
some qualitative feeling for some quantum phenomena before we get into the
mathematical details of quantum mechanics. Furthermore, all our experiences
are with waves and with particles, and so it is rather handy to use the wave and
particle ideas to get some understanding of what happens in given circumstances
before we know the complete mathematics of the quantum-mechanical amplitudes.
We shall try to indicate the weakest places as we go along, but most of it is very
nearly correct—it is just a matter of interpretation.

First of all, we know that the new way of representing the world in quantum
mechanics—the new framework—is to give an amplitude for every event that can
occur, and if the event involves the reception of one particle, then we can give the
amplitude to find that one particle at different places and at different times. The
probability of finding the particle is then proportional to the absolute square of
the amplitude. In general, the amplitude to find a particle in different places at
different times varies with position and time.

In some special case it can be that the amplitude varies sinusoidally in space
and time like ¢*“* %", where r is the vector position from some origin. (Do not
forget that these amplitudes are complex numbers, not real numbers.) Such an
amplitude varies according to a definite frequency w and wave number k. Then
it turns out that this corresponds to a classical limiting situation where we would
have believed that we have a particle whose energy E was known and is related to
the frequency by

E = how, 2.0

and whose momentum p is also known and is related to the wave number by
p = hk. 2.2)

(The symbol % represents the number 4 divided by 27; # = h/27.)

This means that the idea of a particle is limited. The idea of a particle—its
location, its momentum, etc.—which we use so much, is in certain ways unsatis-
factory. For instance, if an amplitude to find a particle at different places is given
by "“* whose absolute square is a constant, that would mean that the prob-
ability of finding a particle is the same at all points. That means we do not know
where it is—it can be anywhere—there is a great uncertainty in its location.

On the other hand, if the position of a particle is more or less well known and
we can predict it fairly accurately. then the probability of finding it in different
places must be confingd to a certain region, whose length we call Ax. Outside this
region, the probability is zero. Now this probability is the absolute square of an
amplitude, and if the absolute square is zero, the amplitude is also zero, so that
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we have a wave train whose length is Ax (Fig. 2-1), and the wavelength (the
distance between nodes of the waves in the train) of that wave train is what corre-
sponds to the particle momentum. -

Here we encounter a strange thing about waves; a very simple thing which has
nothing to do with quantum mechanics strictly. Tt is something that anybody
who works with waves, even if he knows no quantum mechanics, knows: namely,
we cannot define a unique wavelength for a short wave train. Such a wave train does
not have a definite wavelength; there is an indefiniteness in the wave number that
is related to the finite length of the train, and thus there is an indefiniteness in
the momentum.

2-2 Measurement of position and momentum

Let us consider two examples of this idea—to see the reason that there is an
uncertainty in the position and/or the momentum, if quantum mechanics is right.
We have also seen before that if there were not such a thing—if it were possible to
measure the position and the momentum of anything simultaneously—we would
have a paradox; it is fortunate that we do not have such a paradox, and the fact
that such an uncertainty comes naturally from the wave picture shows that every-
thing is mutually consistent.

Here is one example which shows the relationship between the position and
the momentum in a circumstance that is easy to understand. Suppose we have a
single slit, and particles are coming from very far away with a certain energy—so
that they are all coming essentially horizontally (Fig. 2-2). We are going to
concentrate on the vertical components of momentum. All of these particles have
a certain horizontal momentum p,, say, in a classical sense. So, in the classical
sense, the vertical momentum p,, before the particle goes through the hole, is
definitely known. The particle is moving neither up nor down. because it came from
a source that is far away—and so the vertical momentum is of course zero. But
now let us suppose that it goes through a hole whose width is B. Then after it has
come out through the hole, we know the position vertically—the y-position—with
considerable accuracy—namely = B.f That is, the uncertainty in position, Ay, is
of order B. Now we might also want to say, since we known the momentum is
absolutely horizontal, that Ap, is zero; but that is wrong. We once knew the mo-
mentum was horizontal, but we do not know it any more. Before the particles
passed through the hole, we did not know their vertical positions. Now that we
have found the vertical position by having the particle come through the hole, we
have lost our information on the vertical momentum! Why? According to the
wave theory, there is a spreading out, or diffraction, of the waves after they go
through the slit, just as for light. Therefore there is a certain probability that
particles coming out of the slit are not coming'exactly straight. The pattern is
spread out by the diflraction effect, and the angle of spread, which we can define
as the angle of the first minimum, is a measure of the uncertainty in the final angle.

How does the pattern become spread? To say it is spread means that there is
some chance for the particle to be moving up or down, that is, to have a component
of momentum up or down. We say chance and particle because we can detect this
diffraction pattern with a particle counter, and when the counter receives the
particle, say at C in Fig. 2-2, it receives the entire particle, so that, in a classical
sense, the particle has a vertical momentum, in order to get from the slit up to C.

To get a rough idea of the spread of the momentum, the vertical momentum
p, has a spread which is equal to po Af, where py is the horizontal momentum.
And how big is Af in the spread-out pattern? We know that the first minimum
occurs at an angle Af such that the waves from one edge of the slit have to travel
one wavelength farther than the waves from the other side—we worked that out
before (Chapter 30 of Vol. I). Therefore A8 is A/B, and so Ap, in this experiment
is poM/B. Note that if we make B smaller and make a more accurate measurement

t More precisely, the error in our knowledge of y is =B/2. But we are now only in-
terested in the general idea, so we won’t worry about factors of 2.
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of the position of the particle, the diffraction pattern gets wider. So the narrower
we make the slit, the wider the pattern gets, and the more is the likelihood that we
would find that the particle has sidewise momentum. Thus the uncertainty in the
vertical momentum is inversely proportional to the uncertainty of y. In fact, we
see that the product of the two is equal to poA. But X is the wavelength and p is
the momentum, and in accordance with quantum mechanics, the wavelength times
the momentum is Planck’s constant 4. So we obtain the rule that the uncertainties
in the vertical momentum and in the vertical position have a product of the order A:

Ay Apy = h. 2.3)

We cannot prepare a system in which we know the vertical position of a particle
and can predict how it will move vertically with greater certainty than given by
(2.3). That is, the uncertainty in the vertical momentum must exceed 4/Ay, where
Ay is the uncertainty in our knowledge of the position.

Sometimes people say quantum mechanics is all wrong. When the particle
arrived from the left, its vertical momentum was zero. And now that it has gone
through the slit, its position is known. Both position and momentum seem to
be known with arbitrary accuracy. It is quite true that we can receive a particle,
and on reception determine what its position is and what its momentum would
have had to have been to have gotten there. That is true, but that is not what the
uncertainty relation (2.3) refers to. Equation (2.3) refers to the predictability
of a situation, not remarks about the past. It does no good to say “I knew what
the momentum was before it went through the slit, and now I know the position,”
because now the momentum knowledge is lost. The fact that it went through the
slit no longer permits us to predict the vertical momentum. We are talking about
a predictive theory, not just measurements after the fact. So we must talk about
what we can predict.

Now let us take the thing the other way around. Let us take another example
of the same phenomenon, a little more quantitatively. In the previous example
we measured the momentum by a classical method. Namely, we considered the
direction and the velocity and the angles, etc., so we got the momentum by classical
analysis. But since momentum is related to wave number, there exists in nature
still another way to measure the momentum of a particle—photon or otherwise—
which has no classical analog, because it uses Eq. (2.2). We measure the wave-
lengths of the waves. Let us try to measure momentum in this way.

Suppose we have a grating with a large number of lines (Fig. 2-3), and send
a beam of particles at the grating. We have often discussed this problem: if the
particles have a definite momentum, then we get a very sharp pattern in a certain
direction, because of the interference. And we have also talked about how accu-
rately we can determine that momentum, that is to say, what the resolving power
of such a grating is. Rather than derive it again, we refer to Chapter 30 of Volume
I, where we found that the relative uncertainty in the wavelength that can be
measured with a given grating is 1/ Nm, where N is the number of lines on the grat-
ing and m is the order of the diffraction pattern. That is,

AN\ = 1/Nm. (2.4
Now formula (2.4) can be rewritten as
AN/A? = 1/Nmx = 1/L, (2.5)

where L is the distance shown in Fig. 2-3. This distance is the difference between
the total distance that the particle or wave or whatever it is has to travel if it is
reflected from the bottom of the grating, and the distance that it has to travel if
it is reflected from the top of the grating. That is, the waves which form the diffrac-
tion pattern are waves which come from different parts of the grating. The first
ones that arrive come from the bottom end of the grating, from the beginning of
the wave train, and the rest of them come from later parts of the wave train, coming
from different parts of the grating, until the last one finally arrives, and that involves
a point in the wave train a distance L behind the first point. So in order that we
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Fig. 2-3. Determination of momen-
tum by using a diffraction grating.
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shall have a sharp line in our spectrum corresponding to a definite momentum,
with an uncertainty given by (2.4), we have to have a wave train of at least length
L. If the wave train is too short, we are not using the entire grating. The waves
which form the spectrum are being reflected from only a very short sector of the
grating if the wave train is too short, and the grating will not work right—we will
find a big angular spread. In order to get a narrower one, we need to use the whole
grating, so that at least at some moment the whole wave train is scattering simul-
taneously from all parts of the grating. Thus the wave train must be of length L
in order to have an uncertainty in the wavelength less than that given by (2.5).
Incidentally,

AN/A? = A(1/N) = Ak/2T. (2.6)
Therefore

Ak = 2m/L, Q@7

where L is the length of the wave train.

This means that if we have a wave train whose length is less than L, the un-
certainty in the wave number must exceed 2w/L. Or the uncertainty in a wave
number times the length of the wave train—we will call that for a moment Ax—
exceeds 2. We call it Ax because that is the uncertainty in the location of the
particle. If the wave train exists only in a finite length, then that is where we could
find the particle, within an uncertainty Ax. Now this property of waves, that the
length of the wave train times the uncertainty of the wave number associated with
it is at least 2, is a property that is known to everyone who studies them. It has
nothing to do with quantum mechanics. It is simply that if we have a finite train,
we cannot count the waves in it very precisely.

Let us try another way to see the reason for that. Suppose that we have a
finite train of length L; then because of the way it has to decrease at the ends, as
in Fig. 2-1, the number of waves in the length L is uncertain by something like =1.
But the number of waves in L is kL/2%. Thus k is uncertain, and we again get the
result (2.7), a property merely of waves. The same thing works whether the waves
are in space and k is the number of radians per centimeter and L is the length of
the train, or the waves are in time and w is the number of oscillations per second
and T is the “length” in time that the wave train comes in. That is, if we have
a wave train lasting only for a certain finite time 7', then the uncertainty in the fre-
quency is given by

Aw = 2x/T. (2.8)

We have tried to emphasize that these are properties of waves alone, and they are
well known, for example, in the theory of sound.

The point is that in quantum mechanics we interpret the wave number as
being a measure of the momentum of a particle, with the rule that p = #k, so
that relation (2.7) tells us that Ap = h/Ax. This, then, is a limitation of the classi-
cal idea of momentum. (Naturally, it has to be limited in some ways if we are
going to represent particles by waves!) It<s nice that we have found a rule that
gives us some idea of when there is a failure of classical ideas.

2-3 Crystal diffraction

Next let us consider the reflection of particle waves from a crystal. A crystal
is a thick thing which has a whole lot of similar atoms—we will inclnde some com-
plications later—in a nice array. The question is how to set the array so that we
get a strong reflected maximum in a given direction for a given beam of, say, light
(x-rays), electrons, neutrons, or anything else. In order to obtain a strong reflection,
the scattering from all of the atoms must be in phase. There cannot be equal num-
bers in phase and out of phase, or the waves will cancel out. The way to arrange
things is to find the regions of constant phase, as we have already explained;
they are planes which make equal angles with the initial and final directions
(Fig. 2-4).

If we consider two parallel planes, as in Fig. 2-4, the waves scattered from the
two planes will be in phase, provided the difference in distance traveled by a wave
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front is an integral number of wavelengths. This difference can be seen to be
2dsin 6, where d is the perpendicular distance between the planes. Thus the
condition for coherent reflection is

2dsin 8 = n\ (n=12..) 2.9

If, for example, the crystal is such that the atoms happen to lie on planes obey-
ing condition (2.9) with n = 1, then there will be a strong reflection. If, on the
other hand, there are other atoms of the same nature (equal in density) halfway
between, then the intermediate planes will also scatter equally strongly and will
interfere with the others and produce no effect. So d in (2.9) must refer to ad-
Jacent planes; we cannot take a plane five layers farther back and use this formula!

As a matter of interest, actual crystals are not usually as simple as a single
kind of atom repeated in a certain way. Instead, if we make a two-dimensional
analog, they are much like wallpaper, in which there is some kind of figure which
repeats all over the wallpaper. By “figure” we mean, in the case of atoms, some
arrangement—calcium and a carbon and three oxygens, etc., for calcium carbonate,
and so on—which may involve a relatively large number of atoms. But whatever
it is, the figure is repeated in a pattern. This basic figure is called a unit cell.

The basic pattern of repetition defines what we call the lattice type; the lattice
type can be immediately determined by looking at the reflections and seeing what
their symmetry is. In other words, where we find any reflections az all determines
the lattice type, but in order to determine what is in each of the elements of the
lattice one must take into account the intensity of the scattering at the various
directions. Which directions scatter depends on the type of lattice, but how strongly
each scatters is determined by what is inside each unit cell, and in that way the
structure of crystals is worked out.

Two photographs of x-ray diffraction patterns are shown in Figs. 2-5 and
2-6; they illustrate scattering from rock salt and myoglobin, respectively.

Incidentally, an interesting thing happens if the spacings of the nearest planes
are less than \/2. In this case (2.9) has no solution for n. Thus if A is bigger
than twice the distance between adjacent planes, then there is no side diffraction
pattern, and the light—or whatever it is—will go right through the material with-
out bouncing off or getting lost. So in the case of light, where A is much bigger
than the spacing, of course it does go through and there is no pattern of reflection
from the planes of the crystal.

This fact also has an interesting consequence in the case of piles which make
neutrons (these are obviously particles, for anybody’s money!). If we take these
neutrons and let them into a long block of graphite, the neutrons diffuse and
work their way along (Fig. 2-7). They diffuse because they are bounced by the
atoms, but strictly, in the wave theory, they are bounced by the atoms because
of diffraction from the crystal planes. It turns out that if we take a very long piece
of graphite, the neutrons that come out the far end are all of long wavelength!
In fact, if one plots the intensity as a function of wavelength, we get nothing except
for wavelengths longer than a certain minimum (Fig. 2-8). In other words, we
can get very slow neutrons that way. Only the slowest neutrons come through;
they are not diffracted or scattered by the crystal planes of the graphite, but keep
going right through like light through glass, and are not scattered out the sides.
There are many other demonstrations of the reality of neutron waves and waves
of other particles.

2-4 The size of an atom

We now consider another application of the uncertainty relation, Eq. (2.3).
It must not be taken too seriously; the idea is right but the analysis is not very
accurate. The idea has to do with the determination of the size of atoms, and the
fact that, classically, the electrons would radiate light and spiral in until they settle
down right on top of the nucleus. But that cannot be right quantum-mechanically
because then we would know where each electron was and how fast it was moving.
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Fig. 2-5. The pattern produced by
the diffraction of a beam of x-rays in a
crystal of sodium chloride.

Fig. 2-6. The x-ray diffraction pat-
tern of myoglobin.
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spectral frequencies was noted before quantum mechanics was discovered, and it is
called the Ritz combination principle. This is again a mystery from the point of
view of classical mechanics. Let us not belabor the point that classical mechanics
is a failure in the atomic domain; we seem to have demonstrated that pretty well.

We have already talked about quantum mechanics as being represented by
amplitudes which behave like waves, with certain frequencies and wave numbers.
Let us observe how it comes about from the point of view of amplitudes that the
atom has definite energy states. This is something we cannot understand from what
has been said so far, but we are all familiar with the fact that confined waves have
definite frequencies. For instance, if sound is confined to an organ pipe, or any-
thing like that, then there is more than one way that the sound can vibrate, but
for each such way there is a definite frequency. Thus an object in which the waves
are confined has certain resonance frequencies. It is therefore a property of waves
in a confined space—a subject which we will discuss in detail with formulas later
on—that they exist only at definite frequencies. And since the general relation
exists between frequencies of the amplitude and energy, we are not surprised to
find definite energies associated with electrons bound in atoms.

2-6 Philosophical implications

Let us consider briefly some philosophical implications of quantum mechanics.
As always, there are two aspects of the problem: one is the philosophical implica-
tion for physics, and the other is the extrapolation of philosophical matters to
other fields. When philosophical ideas associated with science are dragged into
another field, they are usually completely distorted. Therefore we shall confine
our remarks as much as possible to physics itself.

First of all, the most interesting aspect is the idea of the uncertainty principle;
making an observation affects the phenomenon. It has always been known that
making observations affects a phenomenon, but the point is that the effect cannot
be disregarded or minimized or decreased arbitrarily by rearranging the apparatus.
When we look for a certain phenomenon we cannot help but disturb it in a certain
minimum way, and rthe disturbance is necessary for the consistency of the viewpoint.
The observer was sometimes important in prequantum physics, but only in a
trivial sense. The problem has been raised: if a tree falls in a forest and there
is nobody there to hear it, does it make a noise? A real tree falling in a real forest
makes a sound, of course, even if nobody is there. Even if no one is present to hear
it, there are other traces left. The sound will shake some leaves, and if we were
careful enough we might find somewhere that some thorn had rubbed against a
leaf and made a tiny scratch that could not be explained unless we assumed the
leaf were vibrating. So in a certain sense we would have to admit that there is a
sound made. We might ask: was there a sensation of sound? No, sensations have
to do, presumably, with consciousness. And whether ants are conscious and
whether there were ants in the forest, or whether the tree was conscious, we do not
know. Let us leave the problem in that form.

Another thing that people have emphasized since quantum mechanics was
developed is the idea that we should not speak about those things which we cannot
measure. (Actually relativity theory also said this.) Unless a thing can be defined
by measurement, it has no place in a theory. And since an accurate value of the
momentum of a localized particle cannot be defined by measurement it therefore
has no place in the theory. The idea that this is what was the matter with classical
theory is a fulse position. It is a careless analysis of the situation. Just because we
cannot measure position and momentum precisely does not a priori mean that we
cannot talk about them. It only means that we need not talk about them. The
situation in the sciences is this: A concept or an idea which cannot be measured
or cannot be referred directly to experiment may or may not be useful. It need
not exist in a theory. In other words, suppose we compare the classical theory of
the world with the quantum theory of the world, and suppose that it is true ex-
perimentally that we can measure position and momentum only imprecisely. The
question is whether the ideas of the exact position of a particle and the exact
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momentum of a particle are valid or not. The classical theory admits the ideas;
the quantum theory does not. This does not in itself mean that classical physics
is wrong. When the new quantum mechanics was discovered, the classical people—
which included everybody except Heisenberg, Schrédinger, and Born—said:
“Look, your theory is not any good because you cannot answer certain questions
like: what is the exact position of a particle?, which hole does it go through?,
and some others.” Heisenberg’s answer was: “I do not need to answer such ques-
tions because you cannot ask such a question experimentally.” It is that we do
not have to. Consider two theories (a) and (b); (a) contains an idea that cannot be
checked directly but which is used in the analysis, and the other, (b), does not
contain the idea. If they disagree in their predictions, one could not claim that
(b) is false because it cannot explain this idea that is in (a), because that idea is
one of the things that cannot be checked directly. It is always good to know which
ideas cannot be checked directly, but it is not necessary to remove them all. It is
not true that we can pursue science completely by using only those concepts which
are directly subject to experiment.

In quantum mechanics itself there is a probability amplitude, there is a
potential, and there are many constructs that we cannot measure directly. The basis
of a science is its ability to predict. To predict means to tell what will happen in an
experiment that has never been done. How can we do that? By assuming that we
know what is there, independent of the experiment. We must extrapolate the
experiments to a region where they have not been done. We must take our con-
cepts and extend them to places where they have not yet been checked. If we do
not do that, we have no prediction. So it was perfectly sensible for the classical
physicists to go happily along and suppose that the position—which obviously
means something for a baseball—meant something also for an electron. It was
not stupidity. It was a sensible procedure. Today we say that the law of relativity
is supposed to be true at all energies, but someday somebody may come along and
say how stupid we were. We do not know where we are “stupid” until we “stick
our neck out,” and so the whole idea is to put our neck out. And the only way to
find out that we are wrong is to find out what our predictions are. It is absolutely
necessary to make constructs.

We have already made a few remarks about the indeterminacy of quantum
mechanics. That is, that we are unable now to predict what will happen in physics
in a given physical circumstance which is arranged as carefully as possible. If
we have an atom that is in an excited state and so is going to emit a photon, we
cannot say when it will emit the photon. It has a certain amplitude to emit the
photon at any time, and we can predict only a probability for emission; we cannot
predict the future exactly. This has given rise to all kinds of nonsense and questions
on the meaning of freedom of will, and of the idea that the world is uncertain.

Of course we must emphasize that classical physics is also indeterminate, in a
sense. It is usually thought that this indeterminacy, that we cannot predict the
future, is an important quantum-mechanical thing, and this is said to explain the
behavior of the mind, feelings of free will, etc. But if the world were classical—if
the laws of mechanics were classical—it is not quite obvious that the mind would
not feel more or less the same. It is true classically that if we knew the position and
the velocity of every particle in the world, or in a box of gas, we could predict ex-
actly what would happen. And therefore the classical world is deterministic.
Suppose, however, that we have a finite accuracy and do not know exacrly where
Just one atom is, say to one part in a billion. Then as it goes along it hits another
atom, and because we did not know the position better than to one part in a billion,
we find an even larger error in the position after the collision. And that is amplified,
of course, in the next collision, so that if we start with only a tiny error it rapidly
magnifies to a very great uncertainty. To give an example: if water falls over a dam,
it splashes. If we stand nearby, every now and then a drop will land on our nose.
This appears to be completely random, yet such a behavior would be predicted
by purely classical laws. The exact position of all the drops depends upon the
precise wigglings of the water before it goes over the dam. How? The tiniest
irregularities are magnified in falling, so that we get complete randomness. Ob-
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viously, we cannot really predict the position of the drops unless we know the
motion of the water absolutely exactly.

Speaking more precisely, given an arbitrary accuracy, no matter how precise,
one can find a time long enough that we cannot make predictions valid for that
long a time. Now the point is that this length of time is not very large. It is not
that the time is millions of years if the accuracy is one part in a billion. The time
goes, in fact, only logarithmically with the error, and it turns out that in only a
very, very liny time we lose all our information. If the accuracy is taken to be one
part in billions and billions and billions—no matter how many billions we wish,
provided we do stop somewhere—then we can find a time less than the time it
took to state the accuracy—after which we can no longer predict what is going
to happen! It is therefore not fair to say that from the apparent freedom and
indeterminacy of the human mind, we should have realized that classical ““deter-
ministic”” physics could not ever hope to understand it, and to welcome quantum
mechanics as a release from a “completely mechanistic’” universe. For already in
classical mechanics there was indeterminability from a practical point of view.
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3

Probability Amplitudes

3-1 The laws for combining amplitudes

When Schrédinger first discovered the correct laws of quantum mechanics,
he wrote an equation which described the amplitude to find a particle in various
places. This equation was very similar to the equations that were already known
to classical physicists—equations that they had used in describing the motion of
air in a sound wave, the transmission of light, and so on. So most of the time at
the beginning of quantum mechanics was spent in solving this equation. But at the
same time an understanding was being developed, particularly by Born and Dirac,
of the basically new physical ideas behind quantum mechanics. As quantum
mechanics developed further, it turned out that there were a large number of things
which were not directly encompassed in the Schrédinger equation—such as the
spin of the electron, and various relativistic phenomena. Traditionally, all courses
in quantum mechanics have begun in the same way, retracing the path followed in
the historical development of the subject. One first learns a great deal about clas-
sical mechanics so that he will be able to understand how to solve the Schrédinger
equation. Then he spends a long time working out various solutions. Only after
a detailed study of this equation does he get to the “advanced” subject of the
electron’s spin.

We had also originally considered that the right way to conclude these lectures
on physics was to show how to solve the equations of classical physics in compli-
cated situations—such as the description of sound waves in enclosed regions, modes
of electromagnetic radiation in cylindrical cavities, and so on. That was the original
plan for this course. However, we have decided to abandon that plan and to give
instead an introduction to the quantum mechanics. We have come to the con-
clusion that what are usually called the advanced parts of quantum mechanics are,
in fact, quite simple. The mathematics that is involved is particularly simple,
involving simple algebraic operations and no differential equations or at most
only very simple ones. The only problem is that we must jump the gap of no
longer being able to describe the behavior in detail of particles in space. So this
is what we are going to try to do: to tell you about what conventionally would be
called the “advanced™ parts of quantum mechanics. But they are, we assure you,
by all odds the simplest parts—in a deep sense of the word—as well as the most
basic parts. This is frankly a pedagogical experiment; it has never been done
before, as far as we know.

In this subject we have, of course, the difficulty that the quantum mechanical
behavior of things is quite strange. Nobody has an everyday experience to lean
on to get a rough, intuitive idea of what will happen. So there are two ways of
presenting the subject: We could either describe what can happen in a rather
rough physical way, telling you more or less what happens without giving the
precise laws of everything; or we could, on the other hand, give the precise laws
in their abstract form. But, then because of the abstractions, you wouldn’t know
what they were all about, physically. The latter method is unsatisfactory because
it is completely abstract, and the first way leaves an uncomfortable feeling because
one doesn’t know exactly what is true and what is false. We are not sure how to
overcome this difficulty. You will notice, in fact, that Chapters | and 2 showed
this problem. The first chapter was relatively precise; but the second chapter was
a rough description of the characteristics of different phenomena. Here, we will
try to find a happy medium between the two extremes.
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3-1. Interference experiment with electrons.

We will begin in this chapter by dealing with some general quantum me-
chanical ideas. Some of the statements will be quite precise, others only partially
precise. 1t will be hard to tell you as we go along which is which, but by the time
you have finished the rest of the book, you will understand in looking back which
parts hold up and which parts were only explained roughly. The chapters which
follow this one will not be so imprecise. In fact, one of the reasons we have tried
carefully to be precise in the succeeding chapters is so that we can show you one of
the most beautiful things about quantum mechanics—how much can be deduced
from so little.

We begin by discussing again the superposition of probability amplitudes.
As an example we will refer to the experiment described in Chapter 1, and shown
again here in Fig. 3~1. There is a source s of particles, say electrons; then there
is a wall with two slits in it; after the wall, there is a detector located at some
position x. We ask for the probability that a particle will be found at x. Our first
general principle in quantum mechanics is that the probability that a particle will
arrive at x, when let out at the source s, can be represented quantitatively by the
absolute square of a complex number called a probability amplitude—in this case,
the “amplitude that a particle from s will arrive at x.” We will use such amplitudes
so frequently that we will use a shorthand notation—invented by Dirac and
generally used in quantum mechanics—to represent this idea. We write the proba-
bility amplitude this way:

(Particle arrives at x | particle leaves s). 3.1)

In other words, the two brackets { ) are a sign equivalent to *‘the amplitude that™;
the expression at the right of the vertical line always gives the starting condition,
and the one at the left, the final condition. Sometimes it will also be convenient to
abbreviate still more and describe the initial and final conditions by single letters.
For example, we may on occasion write the amplitude (3.1) as

{x]s). 3.2)

We want to emphasize that such an amplitude is, of course, just a single number—
a complex number. .

We have already seen in the discussion of Chapter | that when there are two
ways for the particle to reach the detector, the resulting probability is not the
sum of the two probabilities, but must be written as the absolute square of the
sum of two amplitudes. We had that the probability that an electron arrives at the
detector when both paths are open is

P2 = |¢1 + ¢2l> (3.3)
3-2
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Fig. 3-2. A more complicated inter-
b ference experiment.

We wish now to put this result in terms of our new notation. First, however, we
want to state our second general principle of quantum mechanics: When a particle
can reach a given state by two possible routes, the total amplitude for the process
is the sum of the amplitudes for the two routes considered separately. In our new
notation we write that

<x [ 5)both holes open = <-x | S)through 1+ <X I S>through 2- 3.4

Incidentally, we are going to suppose that the holes 1 and 2 are small enough that
when we say an electron goes through the hole, we don’t have to discuss which part
of the hole. We could, of course, split each hole into pieces with a certain amplitude
that the electron goes to the top of the hole and the bottom of the hole and so on.
We will suppose that the hole is small enough so that we don’t have to worry about
this detail. That is part of the roughness involved; the matter can be made more
precise, but we don’t want to do so at this stage.

Now we want to write out in more detail what we can say about the amplitude
for the process in which the electron reaches the detector at x by way of hole 1.
We can do that by using our third general principle: When a particle goes by some
particular route the amplitude for that route can be written as the product of the
amplitude to go part way with the amplitude to go the rest of the way. For the
setup of Fig. 3—-1 the amplitude to go from s to x by way of hole 1 is equal to the
amplitude to go from s to 1, multiplied by the amplitude to go from 1 to x.

(x| $hvia 1 = (] IX1]s). (3.5

Again this result is not completely precise. We should also include a factor for the
amplitude that the electron will get through the hole at 1; but in the present case
it is a simple hole, and we will take this factor to be unity.

You will note that Eq. (3.5) appears to be written in reverse order. It is to
be read from right to left: The electron goes from s to 1 and then from 1 to x.
In summary, if events occur in succession—that is, if you can analyze one of the
routes of the particle by saying it does this, then it does this, then it does that—the
resultant amplitude for that route is calculated by multiplying in succession the
amplitude for each of the successive events. Using this law we can rewrite Eq.
(3.4) as

x| $hotn = x| DA |s) + (x]2)2]s).

Now we wish to show that just using these principles we can calculate a much
more complicated problem like the one shown in Fig. 3-2. Here we have two
walls, one with two holes, 1 and 2, and another which has three holes, a, b, and c.
Behind the second wall there is a detector at x, and we want to know the amplitude
for a particle to arrive there. Well, one way you can find this is by calculating the
superposition, or interference, of the waves that go through; but you can also do
it by saying that there are six possible routes and superposing an amplitude for
each. The electron can go through hole 1, then through hole a, and then to x; or
it could go through hole 1, then through hole b, and then to x; and so on. Accord-
ing to our second principle, the amplitudes for alternative routes add, so we should
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be able to write the amplitude from s to x as a sum of six separate amplitudes.
On the other hand, using the third principle, each of these separate amplitudes
can be written as a product of three amplitudes. For example, one of them is the
amplitude for s to 1, times the amplitude for 1 to a, times the amplitude for a to x.
Using our shorthand notation, we can write the complete amplitude to go from
s to x as

(xlsy = {xlaXa| 1)1 |s) + x[b)b [ 1L ]s) + -+ + (x|eXe[2)2]s).
We can save writing by using the summation notation

(xls) = D (x|a)aliils). (3.6)

i=1,2
a=a,b,c
In order to make any calculations using these methods, it is, naturally, neces-
sary to know the amplitude to get from one place to another. We will give a rough
idea of a typical amplitude. It leaves out certain things like the polarization of
light or the spin of the electron, but aside from such features it is quite accurate.
We give it so that you can solve problems involving various combinations of slits.
Suppose a particle with a definite energy is going in empty space from a location
ry to a location re. In other words, it is a free particle with no forces on it. Except
for a numerical factor in front, the amplitude to go from r; to rg is

eip"lz/ﬁ

ro|ry) = —
(ralm) =

) 3.7)

where ¥ = ry — ry, and p is the momentum which is related to the energy F
by the relativistic equation

pict = E* — (moc)?,
or the nonrelativistic equation

p2

= Kinetic energy.
Equation (3.7) says in effect that the particle has wavelike properties, the amplitude
propagating as a wave with a wave number equal to the momentum divided by #.

In the most general case, the amplitude and the corresponding probability
will also involve the time. For most of these initial discussions we will suppose
that the source always emits the particles with a given energy so we will not need to
worry about the time. But we could, in the general case, be interested in some
other questions. Suppose that a particle is liberated at a certain place P at a certain
time, and you would like to know the amplitude for it to arrive at some location,
say r, at some later time. This could be represented symbolically as the amplitude
(r,t = t,|P,t = 0). Clearly, this will depend upon both r and ¢. You will get
different results if you put the detector in different places and measure at different
times. This function of r and ¢, in general, satisfies a differential equation which is
a wave equation. For example, in a nonrelativistic case it is the Schrodinger equa-
tion. One has then a wave equation analogous to the equation for electromagnetic
waves or waves of sound in a gas. However, it must be emphasized that the wave
function that satisfies the equation is not like a real wave in space; one cannot
picture any kind of reality to this wave as one does for a sound wave.

Although one may be tempted to think in terms of “particle waves” when
dealing with one particle, it is not a good idea, for if there are, say, two particles,
the amplitude to find one at r; and the other at r, is not a simple wave in three-
dimensional space, but depends on the six space variables r; and ro. If we are,
for example, dealing with two (or more) particles, we will need the following
additional principle: Provided that the two particles do not interact, the amplitude
that one particle will do one thing and the other one something else is the product
of the two amplitudes that the two particles would do the two things separately.
For example, if (@ | 5;) is the amplitude for particle 1 to go from s, to a,and (b | 53)
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is the amplitude for particle 2 to go from s, to b, the amplitude that both things
will happen together is

(a|s1){b] s2).

There is one more point to emphasize. Suppose that we didn’t know where
the particles in Fig. 3-2 come from before arriving at holes 1 and 2 of the first
wall. We can still make a prediction of what will happen beyond the wall (for
example, the amplitude to arrive at x) provided that we are given two numbers:
the amplitude to have arrived at 1 and the amplitude to have arrived at 2. In other
words, because of the fact that the amplitude for successive events multiplies, as
shown in Eq. (3.6), all you need to know to continue the analysis is two numbers—
in this particular case (1 | s) and {2 | s). These two complex numbers are enough
to predict all the future. That is what really makes quantum mechanics easy. It
turns out that in later chapters we are going to do just such a thing when we specify
a starting condition in terms of two (or a few) numbers. Of course, these numbers
depend upon where the source is located and possibly other details about the
apparatus, but given the two numbers, we do not need to know any more about
such details.
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3-2 The two-slit interference pattern

Now we would like to consider a matter which was discussed in some detail
in Chapter 1. This time we will do it with the full glory of the amplitude idea
to show you how it works out. We take the same experiment shown in Fig.
3-1, but now with the addition of a light source behind the two holes, as shown
in Fig. 3-3. In Chapter 1, we discovered the following interesting result. If
we looked behind slit 1 and saw a photon scattered from there, then the distribu-
tion obtained for the electrons at x in coincidence with these photons was the same
as though slit 2 were closed. The total distribution for electrons that had been .
“seen” at either slit 1 or slit 2 was the sum of the separate distributions and was
completely different from the distribution with the light turned off. This was true
at least if we used light of short enough wavelength. 1If the wavelength was made
longer so we could not be sure at which hole the scattering had occurred, the
distribution became more like the one with the light turned off,

Let’s examine what is happening by using our new notation and the principles
of combining amplitudes. To simplify the writing, we can again let ¢, stand for
the amplitude that the electron will arrive at x by way of hole 1, that is,

b1 = (x[1XI]s).

Similarly, we’ll let ¢, stand for the amplitude that the electron gets to the detector
by way of hole 2:

¢z = (x[2)(2]s).

These are the amplitudes to go through the two holes and arrive at x if there is no
light. Now if there is light, we ask ourselves the question: What is the amplitude
for the process in which the electron starts at s and a photon is liberated by the
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Fig. 3-4. The probability of count-
ing an electron at x in coincidence with a
photon at D in the experiment of Fig.
3 3: {a) for b = 0; (b) for b = a; (c)
for 0 < b < a.

light source L, ending with the electron at x and a photon seen behind slit 1?
Suppose that we observe the photon behind slit 1 by means of a detector D, as
shown in Fig. 3-3, and use a similar detector D, to count photons scattered
behind hole 2. There will be an amplitude for a photon to arrive at D; and an
electron at x, and also an amplitude for a photon to arrive at D, and an electron
at x. Let’s try to calculate them.

Although we don’t have the correct mathematical formula for all the factors
that go into this calculation, you will see the spirit of it in the following discussion.
First, there is the amplitude (1 | s) that an electron goes from the source to hole 1.
Then we can suppose that there is a certain amplitude that while the electron is at
hole 1 it scatters a photon into the detector D;. Let us represent this amplitude by
a. Then there is the amplitude (x | 1) that the electron goes from slit 1 to the elec-
tron detector at x. The amplitude that the electron goes from s to x via slit | and
scatters a photon into Dy is then

(x| Da(l]s).

Or, in our previous notation, it is just a¢;.

There is also some amplitude that an electron going through slit 2 will scatter
a photon into counter D;. You say, “That’s impossible; how can it scatter into
counter D, if it is only looking at hole 1?" If the wavelength is long enough, there
are diffraction effects, and it is certainly possible. If the apparatus is built well and
if we use photons of short wavelength, then the amplitude that a photon will be
scattered into detector 1, from an electron at 2 is very small. But to keep the
discussion general we want to take into account that there is always some such
amplitude, which we will call . Then the amplitude that an electron goes via
slit 2 and scatters a photon into D is

(x]2)b(2]s) = bgo.

The amplitude to find the electron at x and the photon in Dy is the sum of
two terms, one for each possible path for the electron. Each term is in turn made
up of two factors: first, that the electron went through a hole, and second, that the
photon is scattered by such an electron into detector |; we have

electron from s\

<e1ectr0n at x
photon from L/

photon at D, apy + bey. (3.8)

We can get a similar expression when the photon is found in the other detector
D,. If we assume for simplicity that the system is symmetrical, then « is also the
amplitude for a photon in D, when an electron passes through hole 2, and b is
the amplitude for a photon in D, when the electron passes through hole I. The
corresponding total amplitude for a photon at D, and an electron at x is

electron at x ! electron from s
<photon at D, | photon from L/ aey + ber. (3.9)
Now we are finished. We can easily calculate the probability for various
situations. Suppose that we want to know with what probability we get a count
in Dy and an electron at x. That will be the absolute square of the amplitude
given in Eq. (3.8), namely, just |ag; + b¢2|®. Let’s look more carefully at this
expression. First of all, if b is zero—which is the way we would like to design the
apparatus—then the answer is simply |¢|> diminished in total amplitude by the
factor |a|®. This is the probability distribution that you would get if there were
only one hole—as shown in the graph of Fig. 3-4(a). On the other hand, if the
wavelength is very long, the scattering behind hole 2 into D; may be just about
the same as for hole 1. Although there may be some phases involved in ¢ and b,
we can ask about a simple ease in which the two phases are equal. If a is practically
equal to b, then the total probability becomes |¢; + ¢o|? multiplied by |a|?
since the common factor a can be taken out. This, however, is just the probability
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Fig. 3-4. The probability of count-
ing an electron at x in coincidence with a
photon at D in the experiment of Fig.
3 3: {a) for b = 0; (b) for b = a; (c)
for 0 < b < a.

light source L, ending with the electron at x and a photon seen behind slit 1?
Suppose that we observe the photon behind slit 1 by means of a detector D, as
shown in Fig. 3-3, and use a similar detector D, to count photons scattered
behind hole 2. There will be an amplitude for a photon to arrive at D; and an
electron at x, and also an amplitude for a photon to arrive at D, and an electron
at x. Let’s try to calculate them.

Although we don’t have the correct mathematical formula for all the factors
that go into this calculation, you will see the spirit of it in the following discussion.
First, there is the amplitude (1 | s) that an electron goes from the source to hole 1.
Then we can suppose that there is a certain amplitude that while the electron is at
hole 1 it scatters a photon into the detector D;. Let us represent this amplitude by
a. Then there is the amplitude (x | 1) that the electron goes from slit 1 to the elec-
tron detector at x. The amplitude that the electron goes from s to x via slit | and
scatters a photon into Dy is then

(x| Da(l]s).

Or, in our previous notation, it is just a¢;.

There is also some amplitude that an electron going through slit 2 will scatter
a photon into counter D;. You say, “That’s impossible; how can it scatter into
counter D, if it is only looking at hole 1?" If the wavelength is long enough, there
are diffraction effects, and it is certainly possible. If the apparatus is built well and
if we use photons of short wavelength, then the amplitude that a photon will be
scattered into detector 1, from an electron at 2 is very small. But to keep the
discussion general we want to take into account that there is always some such
amplitude, which we will call . Then the amplitude that an electron goes via
slit 2 and scatters a photon into D is

(x]2)b(2]s) = bgo.

The amplitude to find the electron at x and the photon in Dy is the sum of
two terms, one for each possible path for the electron. Each term is in turn made
up of two factors: first, that the electron went through a hole, and second, that the
photon is scattered by such an electron into detector |; we have

electron from s\

<e1ectr0n at x
photon from L/

photon at D, apy + bey. (3.8)

We can get a similar expression when the photon is found in the other detector
D,. If we assume for simplicity that the system is symmetrical, then « is also the
amplitude for a photon in D, when an electron passes through hole 2, and b is
the amplitude for a photon in D, when the electron passes through hole I. The
corresponding total amplitude for a photon at D, and an electron at x is

electron at x ! electron from s
<photon at D, | photon from L/ aey + ber. (3.9)
Now we are finished. We can easily calculate the probability for various
situations. Suppose that we want to know with what probability we get a count
in Dy and an electron at x. That will be the absolute square of the amplitude
given in Eq. (3.8), namely, just |ag; + b¢2|®. Let’s look more carefully at this
expression. First of all, if b is zero—which is the way we would like to design the
apparatus—then the answer is simply |¢|> diminished in total amplitude by the
factor |a|®. This is the probability distribution that you would get if there were
only one hole—as shown in the graph of Fig. 3-4(a). On the other hand, if the
wavelength is very long, the scattering behind hole 2 into D; may be just about
the same as for hole 1. Although there may be some phases involved in ¢ and b,
we can ask about a simple ease in which the two phases are equal. If a is practically
equal to b, then the total probability becomes |¢; + ¢o|? multiplied by |a|?
since the common factor a can be taken out. This, however, is just the probability
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distribution we would have gotten without the photons at all. Therefore, in the
case that the wavelength is very long—and the photon detection ineffective—you
return to the original distribution curve which shows interference effects, as shown
in Fig. 3-4(b). In the case that the detection is partially effective, there is an inter-
ference between a lot of ¢, and a little of ¢, and you will get an intermediate
distribution such as is sketched in Fig. 3-4(c). Needless to say, if we look for
coincidence counts of photons at D, and electrons at x, we will get the same kinds
of results. If you remember the discussion in Chapter 1, you will see that these
results give a quantitative description of what was described there.

Now we would like to emphasize an important point so that you will avoid
a common error. Suppose that you only want the amplitude that the electron ar-
rives at x, regardless of whether the photon was counted at D; or D,. Should you
add the amplitudes given in Eqs. (3.8) and (3.9)? No! You must never add
amplitudes for different and distinct final states. Once the photon is accepted by
one of the photon counters, we can always determine which alternative occurred
if we want, without any further disturbance to the system. Each alternative has a
probability completely independent of the other. To repeat, do not add amplitudes
for different final conditions, where by “final” we mean at that moment the
probability is desired—that is, when the experiment is “finished.” You do add the
amplitudes for the different indistinguishable alternatives inside the experiment,
before the complete process is finished. At the end of the process you may say that
you “don’t want to look at the photon.” That’s your business, but you still do not
add the amplitudes. Nature does not know what you are looking at, and she
behaves the way she is going to behave whether you bother to take down the data
or not. So here we must not add the amplitudes. We first square the amplitudes
for all possible different final events and then sum. The correct result for an
electron at x and a photon at either D or D, is

/e at x 2

\ph at D,

e froms \
ph from L/

/e at x efroms \
\ph at D, | ph from L/

= lapy + besl? + lage + be4|®.  (3.10)

2+

3-3 Scattering from a crystal

Our next example is a phenomenon in which we have to analyze the inter-
ference of probability amplitudes somewhat carefully. We look at the process of
the scattering of neutrons from a crystal. Suppose we have a crystal which has a
lot of atoms with nuclei at their centers, arranged in a periodic array, and a neutron
beam that comes from far away. We can label the various nuclei in the crystal by
an index 7, where i runs over the integers 1, 2, 3, ... N, with N equal to the total
number of atoms. The problem is to calculate the probability of getting a neutron
into a counter with the arrangement shown in Fig. 3-5. For any particular atom
i, the amplitude that the neutron arrives at the counter C is the amplitude that the
neutron gets from the source S to nucleus #, multiplied by the amplitude a that it
gets scattered there, multiplied by the amplitude that it gets from i to the counter
C. Let’s write that down:

(neutron at C | neutron from S)yi, ; = {(C|i)a (@] S). 3.1

In writing this equation we have assumed that the scattering amplitude a is the
same for all atoms. We have here a large number of apparently indistinguishable
routes. They are indistinguishable because a low-energy neutron is scattered from
a nucleus without knocking the atom out of its place in the crystal—no “record”
is left of the scattering. According to the earlier discussion, the total amplitude
for a neutron at C involves a sum of Eq. (3.11) over all the atoms:

N
(neutron at C | neutron from S) = Z (C|iyali]S). (3.12)

=1
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nuclei; (b) the probability of scattering
with spin flip; (c) the observed counting
rate with a spin one-half nucleus.

Because we are adding amplitudes of scattering from atoms with different space
positions, the amplitudes will have different phases giving the characteristic inter-
ference pattern that we have already analyzed in the case of the scattering of light
from a grating.

The neutron intensity as a function of angle in such an experiment is indeed
often found to show tremendous variations, with very sharp interference peaks
and almost nothing in between—as shown in Fig. 3-6(a). However, for certain
kinds of crystals it does not work this way, and there is—along with the interference
peaks discussed above—a general background of scattering in all directions. We
must try to understand the apparently mysterious reasons for this. Well, we have
not considered one important property of the neutron. It has a spin of one-half,
and so there are two conditions in which it can be: either spin “up” (say perpendicu-
lar to the page in Fig. 3-5) or spin “‘down.” If the nuclei of the crystal have no
spin, the neutron spin doesn't have any effect. But when the nuclei of the crystal
also have a spin, say a spin of one-half, you will observe the background of smeared-
out scattering described above. The explanation is as follows.

If the neutron has one direction of spin and the atomic nucleus has the same
spin., then no change of spin can occur in the scattering process. If the neutron and
atomic nucleus have opposite spin, then scattering can occur by two processes,
one in which the spins are unchanged and another in which the spin directions are
exchanged. This rule for no net change of the sum of the spins is analogous to our
classical law of conservation of angular momentum. We can begin to understand
the phenomenon if we assume that all the scattering nuclei are set up with spins in
one direction. A neutron with the same spin will scatter with the expected sharp
interference distribution. What about one with opposite spin? If it scatters without
spin flip, then nothing is changed from the above; but if the two spins flip over in
the scattering, we could, in principle, find out which nucleus had done the scatter-
ing, since it would be the only one with spin turned over. Well, if we can tell which
atom did the scattering, what have the other atoms got to do with it? Nothing, of
course. The scattering is exactly the same as that from a single atom.

To include this effect, the mathematical formulation of Eq. (3.12) must be
modified since we haven’t described the states completely in that analysis. Let’s
start with all neutrons from the source having spin up and all the nuclei of the
crystal having spin down. First, we would like the amplitude that at the counter
the spin of the neutron is up and all spins of the crystal are still down. This is
not different from our previous discussion. We will let ¢ be the amplitude to
scatter with no flip or spin. The amplitude for scattering from the ith atom is, of
course,

(Cyp, crystal all down | Sy, crystal all down) = (C|i)a (i|S).

Since all the atomic spins are still down, the various alternatives (different values
of i) cannot be distinguished. There is clearly no way to tell which atom did the
scattering. For this process, all the amplitudes interfere.

We have another case, however, where the spin of the detected neutron is
down although it started from S with spin up. In the crystal, one of the spins must
be changed to the up direction—let’s say that of the kth atom. We will assume that
there is the same scattering amplitude with spin flip for every atom, namely b.
(In a real crystal there is the disagreeable possibility that the reversed spin moves
to some other atom, but let’s take the case of a crystal for which this probability
is very low.) The scattering amplitude is then

{Cqown» nucleus k up | Sy, crystal all down) = (C| k)b (k’\ S). 3.13)

If we ask for the probability of finding the neutron spin down and the kth nucleus
spin up, it is equal to the absolute square of this amplitude, which is simply 6|2
times [(C | k){k | S)|%. The second factor is almost independent of location in the
crystal, and all phases have disappeared in taking the absolute square. The
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probability of scattering from any nucleus in the crystal with spin flip is now

N

6> > KC kXK | )],

k=1

which will show a smooth distribution as in Fig. 3-6(b).

You may argue, “l don’t care which atom is up.” Perhaps you don’t, but
nature knows; and the probability is, in fact, what we gave above—there isn’t any
interference. On the other hand, if we ask for the probability that the spin is up at
the detector and all the atoms still have spin down, then we must take the absolute
square of

> (Cliya(i|s).

i=1

Since the terms in this sum have phases, they do interfere, and we get a sharp
interference pattern. If we do an experiment in which we don’t observe the spin
of the detected neutron, then both kinds of events can occur; and the separate
probabilities add. The total probability (or counting rate) as a function of angle
then looks like the graph in Fig. 3-6(c).

Let’s review the physics of this experiment. If you could, in principle, distin-
guish the alternative final states (even though you do not bother to do so), the total,
final probability is obtained by calculating the probabiliry for each state (not the
amplitude) and then adding them together. 1f you cannot distinguish the final
states even in principle, then the probability amplitudes must be summed before
taking the absolute square to find the actual probability. The thing you should
notice particularly is that if you were to try to represent the neutron by a wave
alone, you would get the same kind of distribution for the scattering of a down-
spinning neutron as for an up-spinning neutron. You would have to say that the
“wave”” would come from all the different atoms and interfere just as for the up-
spinning one with the same wavelength. But we know that is not the way it works.
So as we stated earlier, we must be careful not to attribute too much reality to the
waves in space. They are useful for certain problems but not for all.

3-4 Identical particles

The next experiment we will describe is one which shows one of the beautiful
consequences of quantum mechanics. It again involves a physical situation in
which a thing can happen in two indistinguishable ways, so that there is an inter-
ference of amplitudes—as is u/ways true in such circumstances. We are going to
discuss the scattering, at relatively low energy, of nuclei on other nuclei. We
start by thinking of a-particles (which, as you know, are helium nuclei) bombarding,
say, oxygen. To make it easier for us to analyze the reaction, we will look at it in
the center-of-mass system, in which the oxygen nucleus and the «-particle have
their velocities in opposite directions before the collision and again in exactly
opposite directions after the collision. See Fig. 3-7(a). (The magnitudes of the
velocities are, of course, different, since the masses are different.) We will also
suppose that there is conservation of energy and that the collision energy is low
enough that neither particle is broken up or left in an excited state. The reason that
the two particles deflect each other is, of course, that each particle carries a positive
charge and, classically speaking, there is an electrical repulsion as they go by.
The scattering will happen at different angles with different probabilities, and we
would like to discuss something about the angle dependence of such scatterings.
(It is possible, of course, to calculate this thing classically, and it is one of the most
remarkable accidents of quantum mechanics that the answer to this problem
comes out the same as it does classically. This is a curious point because it happens
for no other force except the inverse square law—so it is indeed an accident.)

The probability of scattering in different directions can be measured by an
experiment as shown in Fig. 3-7(a). The counter at position I could be designed
to detect only «-particles; the counter at position 2 could be designed to detect
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Fig. 3~7. The scattering of a-particles from oxygen nuclei, as seen in the center-of-mass system.

only oxygen—ijust as a check. (In the laboratory system the detectors would not
be opposite; but in the CM system they are.) Our experiment consists in measuring
the probability of scattering in various directions. Let’s call () the amplitude to
scatter into the counters when they are at the angle 6; then | £(6)|? will be our
experimentally determined probability.

Now we could set up another experiment in which our counters would respond
to either the a-particle or the oxygen nucleus. Then we have to work out what
happens when we do not bother to distinguish which particles are counted. Of
course, if we are to get an oxygen in the position 6, there must be an a-particle on
the opposite side at the angle (= — 6), as shown in Fig. 3-7(b). So if £(6) is the
amplitude for a-scattering through the angle 6, then f (7 — 6) is the amplitude
for oxygen scattering through the angle 6.1 Thus, the probability for having
some particle in the detector at position 1 is:

Probability of some particle in D; = [f(8)[%2 + [f(m — )%  (3.14)

Note that the two states are distinguishable in principle. Even though in this
experiment we do not distinguish them, we could. According to the earlier dis-
cussion, then, we must add the probabilities, not the amplitudes.

The result given above is correct for a variety of target nuclei—for a-particles
on oxygen, on carbon, on beryllium, on hydrogen. But it is wrong for a-particles on
a-particles. For the one case in which both particles are exactly the same, the
experimental data disagree with the prediction of (3.14). For example, the
scattering probability at 90° is exactly twice what the above theory predicts and
has nothing to do with the particles being “helium” nuclei. If the target is He?,
but the projectiles are a-particles (He?), then there is agreement. Only when the
target is He*—so its nuclei are identical with the incoming a-particle—does the
scattering vary in a peculiar way with angle.

Perhaps you can already see the explanation. There are two ways to get an
a-particle into the counter: by scattering the bombarding «-particle at an angle 6,
or by scattering it at an angle of (= — 6). How can we tell whether the bombarding
particle or the target particle entered the counter? The answer is that we cannot.
In the case of a-particles with a-particles there are two alternatives that cannot be
distinguished. Here, we must let the probability amplitudes interfere by addition,

T In general, a scattering direction should, of course, be described by two angles, the
polar angle ¢, as well as the azimuthal angle §. We would then say that an oxygen nucleus
at (6, ¢) means that the a-particle is at (r — 6,¢ + 7). However, for Coulomb scattering
(and for many other cases), the scattering amplitude is independent of ¢. Then the ampli-
tude to get an oxygen at 6 is the same as the amplitude to get the a-particle at (x — 6).
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processes {a) and (b) are indistinguishable.

and the probability of finding an a-particle in the counter is the square of their sum:
Probability of an e-particle at Dy = [f(8) + f(m — 60)|° (3.15

This is quite a different result than that in Eq. (3.14). We can take an angle
of 7/2 as an example, because it is easy to figure out. For § = /2, we obviously
have f(8) = f(m — 6), so the probability in Eq. (3.15) becomes |f(m/2) +
FG/D = 4 f (/)%

On the other hand, if they did not interfere, the result of Eq. (3.14) gives
only 2|f(m/2)|%. So there is twice as much scattering at 90° as we might have
expected. Of course, at other angles the results will also be different. And so you
have the unusual result that when particles are identical, a certain new thing hap-
pens that doesn’t happen when particles can be distinguished. In the mathematical
description you must add the amplitudes for alternative process in which the two
particles simply exchange roles and there is an interference.

An even more perplexing thing happens when we do the same kind of experi-
ment by scattering electrons on electrons, or protons on protons. Neither of the
above results is then correct! For these particles, we must invoke still a new rule,
a most peculiar rule, which is the following: When you have a situation in which
the identity of the electron which is arriving at a point is exchanged with another
one, the new amplitude interferes with the old one with an opposite phase. 1t is
interference all right, but with a minus sign. In the case of a-particles, when you
exchange the a-particle entering the detector, the interfering amplitudes interfere
with the positive sign. In the case of electrons, the interfering amplitudes for exchange
interfere with a negative sign. Except for another detail to be discussed below, the
proper equation for electrons in an experiment like the one shown in Fig. 3-8 is

Probability of e at Dy = |f(8) — f(7 — 6)|2 (3.16)

The above statement must be qualified, because we have not considered the
spin of the electron (a-particles have no spin). The electron spin may be considered
to be either “up” or “down” with respect to the plane of the scattering. If the
energy of the experiment is low enough, the magnetic forces due to the currents
will be small and the spin will not be affected. We will assume that this is the case
for the present analysis, so that there is no chance that the spins are changed during
the collision. Whatever spin the electron has, it carries along with it. Now you
see there are many possibilities. The bombarding and target particles can have
both spins up, both down, or opposite spins. If both spins are up, as in Fig. 3-8
(or if both spins are down), the same will be true of the recoil particles and the
amplitude for the process is the difference of the amplitudes for the two possibilities
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The scattering of electrons with antiparallel spins.

shown in Fig. 3-8(a) and (b). The probability of detecting an electron in D, is
then given by Eq. (3.16).

Suppose, however, the “bombarding” spin is up and the “target” spin is down.
The electron entering counter 1 can have spin up or spin down, and by measuring
this spin we can tell whether it came from the bombarding beam or from the target.
The two possibilities are shown in Fig. 3-9(a) and (b); they are distinguishable in
principle, and hence there will be no interference—merely an addition of the two
probabilities. The same argument holds if both of the original spins are reversed—
that is, if the left-hand spin is down and the right-hand spin is up.

Now if we take our electrons at random—as from a tungsten filament in which
the electrons are completely unpolarized—then the odds are fifty-fifty that any
particular electron comes out with spin up or spin down. If we don’t bother to
measure the spin of the electrons at any point in the experiment, we have what we
call an unpolarized experiment. The results for this experiment are best calculated
by listing all of the various possibilities as we have done in Table 3-1. A separate
probability is computed for each distinguishable alternative. The total probability
is then the sum of all the separate probabilities. Note that for unpolarized beams
the result for § = m/2 is one-half that of the classical result with independent
particles. The behavior of identical particles has many interesting consequences;
we will discuss them in greater detail in the next chapter.

Table 3-1
Scattering of unpolarized spin one-half particles
Fraction Spin of Spin of Spin at  Spin at -
of cases particle 1 particle 2 D, Dy Probability
1 up up up up [f® — far — 82
vy down down down down | f0) — fGr — 6)|?
up down |f(®)]2
3 up down
down up |far — 6)|2
up down |far — 0)?
1 down up
down up 1£6)[2
Total probability = 3[f(6) — fGr — 0)[% + 3[f(O)|% + /(= — 6)|?




4

Identical Particles

4-1 Bose particles and Fermi particles

In the last chapter we began to consider the special rules for the interference
that occurs in processes with two identical particles. By identical particles we
mean things like electrons which can in no way be distinguished one from another.
If a process involves two particles that are identical, reversing which one arrives
at a counter is an alternative which cannot be distinguished and—like all cases of
alternatives which cannot be distinguished—interferes with the original, un-
exchanged case. The amplitude for an event is then the sum of the two interfering
amplitudes; but, interestingly enough, the interference is in some cases with the
same phase and, in others, with the opposite phase.

Suppose we have a collision of two particles @ and b in which particle a scatters
in the direction 1 and particle b scatters in the direction 2, as sketched in Fig.
4-1(a). Let’s call £(8) the amplitude for this process; then the probability P; of
observing such an event is proportional to | f(8)|> Of course, it could also happen
that particle b scattered into counter 1 and particle a went into counter 2, as shown
in Fig. 4-1(b). Assuming that there are no special directions defined by spins
or such, the probability P, for this process is just |f(w — 6)|%, because it is just
equivalent to the first process with counter 1 moved over to the angle = — 6.
You might also think that the amplitude for the second process is just f(m — 6).
But that is not necessarily so, because there could be an arbitrary phase factor.
That is, the amplitude could be

e f(rr — 9).

Such an amplitude still gives a probability P, equal to | f(m — )|%

Now let’s see what happens if ¢ and b are identical particles. Then the two
different processes shown in the two diagrams of Fig. 4-1 cannot be distinguished.
There is an amplitude that either a or b goes into counter 1, while the other goes
into counter 2. This amplitude is the sum of the amplitudes for the two processes
shown in Fig. 4-1. If we call the first one f(6), then the second one is e®f(m — 6),
where now the phase factor is very important because we are going to be adding
two amplitudes. Suppose we have to multiply the amplitude by a certain phase
factor when we exchange the roles of the two particles. If we exchange them
again we should get the same factor again. But we are then back to the first process.

[

4-1 Bose particles and Fermi
particles

4-2 States with two Bose particles
4-3 States with n Bose particles

4-4 Emission and absorption of
photons

4-5 The blackbody spectrum
4-6 Liquid helium

4-7 The exclusion principle

Review: Blackbody radiation in:
Chapter 41, Vol. I, The Brown-
ian Movement

Chapter 42, Vol. 1, Applica-
tions of Kinetic Theory

2
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Fig. 4-1. In the scattering of two identical particles, the
are indistinguishable.
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The scattering of two a-particles. In (a) the two particles retain their

identity; in (b) a neutron is exchanged during the collision.

The phase factor taken twice must bring us back where we started—its square
must be equal to 1. There are only two possibilities: ¢ is equal to +1, or is equal
to —1. Either the exchanged case contributes with the same sign, or it contributes
with the opposite sign. Both cases exist in nature, each for a different class of par-
ticles. Particles which interfere with a positive sign are called Bose particles and
those which interfere with a negative sign are called Fermi particles. The Bose
particles are the photon, the mesons, and the graviton. The Fermi particles are
the electron, the muon, the neutrinos, the nucleons, and the baryons. We have,
then, that the amplitude for the scattering of identical particles is:

Bose particles:
(Amplitude direct) + (Amplitude exchanged). 4.0

Fermi particles:
(Amplitude direct) — (Amplitude exchanged). 4.2)

For particles with spin—Ilike electrons—there is an additional complication.
We must specify not only the location of the particles but the direction of their spins.
It is only for identica! particles with identical spin states that the amplitudes interfere
when the particies are exchanged. If you think of the scattering of unpolarized
beams—which are a mixture of different spin states—there is some extra arithmetic.

Now an interesting problem arises when there are two or more particles bound
tightly together. For example, an a-particle has four particles in it—two neutrons
and two protons. When two a-particles scatter, there are several possibilities.
It may be that during the scattering there is a certain amplitude that one of the
neutrons will leap across from one a-particle to the other, while a neutron from the
other a-particle leaps the other way so that the two alphas which come out of the
scattering are not the original ones—there has been an exchange of a pair of
neutrons. See Fig. 4-2. The amplitude for scattering with an exchange of a pair
of neutrons will interfere with the amplitude for scattering with no such exchange,
and the interference must be with a minus sign because there has been an exchange
of one pair of Fermi particles. On the other hand, if the relative energy of the two
a-particles is so low that they stay fairly far apart—say, due to the Coulomb
repulsion—and there is never any appreciable probability of exchanging any of
the internal particles, we can consider the a-particle as a simple object, and we do
not need to worry about its internal details. In such circumstances, there are only
two contributions to the scattering amplitude. Either there is no exchange, or all
four of the nucleons are exchanged in the scattering. Since the protons and the
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neutrons in the o-particle are all Fermi particles, an exchange of any pair reverses
the sign of the scattering amplitude. So long as there are no internal changes in
the a-particles, interchanging the two a-particles is the same as interchanging four
pairs of Fermi particles. There is a change in sign for each pair, so the net result
is that the amplitudes combine with a positive sign. The a-particle behaves like a
Bose particle.

So the rule is that composite objects, in circumstances in which the composite
object can be considered as a single object, behave like Fermi particles or Bose
particles, depending on whether they contain an odd number or an even number
of Fermi particles.

All the elementary Fermi particles we have mentioned—such as the electron,
the proton, the neutron, and so on—have a spin j = 1/2. If several such Fermi
particles are put together to form a composite object, the resulting spin may be
either integral or half-integral. For example, the common isotope of helium,
He*, which has two neutrons and two protons, has a spin of zero, whereas Li’
which has three protons and four neutrons, has a spin of 3/2. We will learn later the
rules for compounding angular momentum, and will just mention now that every
composite object which has a half-integral spin imitates a Fermi particle, whereas
every composite object with an integral spin imitates a Bose particle.

This brings up an interesting question: Why is it that particles with half-integral
spin are Fermi particles whose amplitudes add with the minus sign, whereas
particles with integral spin are Bose particles whose amplitudes add with the posi-
tive sign? We apologize for the fact that we cannot give you an elementary ex-
planation. An explanation has been worked out by Pauli from complicated argu-
ments of quantum field theory and relativity. He has shown that the two must
necessarily go together, but we have not been able to find a way of reproducing his
arguments on an elementary level. It appears to be one of the few places in physics
where there is a rule which can be stated very simply, but for which no one
has found a simple and easy explanation. The explanation is deep down in rela-
tivistic quantum mechanics. This probably means that we do not have a complete
understanding of the fundamental principle involved. For the moment, you will
just have to take it as one of the rules of the world.

4-2 States with two Bose particles

Now we would like to discuss an interesting consequence of the addition rule
for Bose particles. It has to do with their behavior when there are several particles
present. We begin by considering a situation in which two Bose particles are scat-
tered from two different scatterers. We won’t worry about the details of the scatter-
ing mechanism. We are interested only in what happens to the scattered particles.
Suppose we have the situation shown in Fig. 4-3. The particle a is scattered into
the state 1. By a state we mean a given direction and energy, or some other given
condition. The particle b is scattered into the state 2. We want to assume that the
two states | and 2 are nearly the same. (What we really want to find out eventually
is the amplitude that the two particles are scattered into identical directions, or
states; but it is best if we think first about what happens if the states are almost
the same and then work out what happens when they become identical.)

Suppose that we had only particle a; then it would have a certain amplitude
for scattering in direction 1, say (1 | a). And particle b alone would have the ampli-
tude (2| b) for landing in direction 2. If the two particles are not identical, the
amplitude for the two scatterings to occur at the same time is just the product

(I[a)2|b).
The probability for such an event is then
KLta)2|b)?,

(1] a)*[(2 | )I%.

which is also equal to
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To save writing for the present arguments, we will sometimes set
(Ila) = ay, (2|b) = bs.
Then the probability of the double scattering is
lai|?[bof2.

It could also happen that particle b is scattered into direction 1, while particle
a goes into direction 2. The amplitude for this process is

Q2 la)l|b),
and the probability of such an event is
(21 aX1]b)]? = |az|?lby|*.

Imagine now that we have a pair of tiny counters that pick up the two scattered
particles. The probability P, that they will pick up two particles together is just
the sum

Py = |a;|?bo|® + |a2i?by|2 (4.3)

Now let’s suppose that the directions 1 and 2 are very close together. We
expect that a should vary smoothly with direction, so a; and as must approach
each other as | and 2 get close together. If they are close enough, the amplitudes a,
and a, will be equal. We can set a; = a, and call them both just a; similarly, we
set by = by = b. Then we get that

Py = 2lal?bl2. (4.4)

Now suppose, however, that @ and b are identical Bose particles. Then the
process of a going into 1 and b going into 2 cannot be distinguished from the ex-
changed process in which a goes into 2 and b goes into 1. In this case the amplirudes
for the two different processes can interfere. The roral amplitude to obtain a
particle in each of the two counters is

(A 1ay21by + 2|a)1|b). 4.5)
And the probability that we get a pair is the absolute square of this amplitude,
PQ = lalbg + agbﬂz = 4\ai2\bl2 (46)

We have the result that it is twice as likely to find two identical Bose particles
scattered into the same state as you would calculate assuming the particles were
different.

Although we have been considering that the two particles are observed in
separate counters, this is not essential—as we can see in the following way. Let’s
imagine that both the directions 1 and 2 would bring the particles into a single
small counter which is some distance away. We will let the direction I be defined
by saying that it heads toward the element of area dS, of the counter. Direction 2
heads toward the surface element ¢S5 of the counter. (We imagine that the counter
presents a surface at right angles to the line from the scatterings.) Now we cannot
give a probability that a particle will go into a precise direction or to a particular
point in space. Such a thing is impossible—the chance for any exact direction is
zero. When we want to be so specific, we shall have to define our amplitudes so
that they give the probability of arriving per unit area of a counter. Suppose that
we had only particle a; it would have a certain amplitude for scattering in direction
1. Let’s define (I | @) = a to be the amplitude that a will scatter info a unit area
of the counter in the direction 1. In other words, the scale of @, is chosen—we
say it is “normalized” so that the probability that it will scatter info an element
of area dS; is

KU a)|?dSy = |ay|* dS,. (4.7)
44



If our counter has the total area AS, and we let dS; range over this area, the total
probability that the particle a will be scattered into the counter is

/AS |ay)? dS;. (4.8)

As before, we want to assume that the counter is sufficiently small so that the
amplitude a, doesn’t vary significantly over the surface of the counter; a; is then a
constant amplitude which we can call a. Then the probability that particle a is
scattered somewhere into the counter is

Po = lal® AS. (4.9)

In the same way, we will have that the probability that particle 5—when it is
alone—scatters into some element of area, say dSs, is

|bs|? dSs.

(We use dS; instead of dS; because we will later want a and b to go into different
directions.) Again we set b, equal to the constant amplitude 4; then the probability
that particle b is counted in the detector is

ps = |b|* AS. (4.10)

Now when both particles are present, the probability that a is scattered into
dS, and b is scattered into dS5 is

[ﬂlbzlzdsl d52 = |ai2}b|2d51 dSz (411)

If we want the probability that both a and b get into the counter, we integrate both
dS, and dS, over AS and find that

Py = |a|2[b|? (AS)2. (4.12)

We notice, incidentally, that this is just equal to p, - ps, just as you would suppose
assuming that the particles ¢ and b act independently of each other.

When the two particles are identical, however, there are two indistinguishable
possibilities for each pair of surface elements dS, and dS,. Particle a going into
dS. and particle b going into ¢S, is indistinguishable from a into dS, and b into
dS2, so the amplitudes for these processes will interfere. (When we had two
different particles above—although we did not in fact care which particle went
where in the counter—we could, in principle, have found out; so there was no
interference. For identical particles we cannot tell, even in principle.) We must
write, then, that the probability that the two particles arrive at dS and dS; is

la1by + aghq|?dS, dS.. (4.13)

Now, however, when we integrate over the area of the counter, we must be careful.
If we let dS; and dS, range over the whole area AS, we would count each part of
the area rwice since (4.13) contains everything that can happen with any pair of
surface elements dS; and dS,t We can still do the integral that way, if we correct
for the double counting by dividing the result by 2. We get then that P, for identical
Bose particles is

Py(Bose) = {4/a|*b|* (45)%} = 2[a|?(b] (AS)*. (4.14)

Again, this is just twice what we got in Eq. (4.12) for distinguishable particles.

If we imagine for a moment that we knew that the b channel had already sent
its particle into the particular direction, we can say that the probability that a
second particle will go into the same direction is twice as great as we would have

T In (4.11) interchanging dS and dS» gives a different event, so both surface elements
should range over the whole area of the counter. In (4.13) we are treating dS; and dS»
as a pair and including everything that can happen. If the integrals include again what
happens when dS | and dS3 are reversed, everything is counted twice.
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Fig. 4-4. The scattering of n parti-
cles into nearby final states.

expected if we had calculated it as an independent event. It is a property of Bose
particles that if there is already one particle in a condition of some kind, the
probability of getting a second one in the same condition is twice as great as it
would be if the first one were not already there. This fact is often stated in the
following way: If there is already one Bose particle in a given state, the amplitude
for putting an identical one on top of it is v/2 greater than if it weren’t there.
(This is not a proper way of stating the result from the physical point of view we
have taken, but if it is used consistently as a rule, it will, of course, give the correct
result.)

4-3 States with n Bose particles

Let’s extend our result to a situation in which there are n particles present.
We imagine the circumstance shown in Fig. 4-4. We have n particles a, b, c, . . .,
which are scattered and end up in the directions 1, 2, 3, .., n. All # directions
are headed toward a small counter a long distance away. As in the last section,
we choose to normalize all the amplitudes so that the probability that each particle
acting alone would go into an element of surface dS of the counter is

()2 ds.

First, let’s assume that the particles are all distinguishable ; then the probability
that n particles will be counted together in # different surface elements is

laybocs .. |2dS,dS,dS; . . (4.15)
Again we take that the amplitudes don’t depend on where dS is located in the
counter (assumed small) and call them simply a, b, ¢, ... The probability (4.15)
becomes

[alzlb|2{c|2...d51 dSQ dS3 (416)

Integrating each dS over the surface AS of the counter, we have that P, (different),
the probability of counting n different particles at once, is

P, (different) = |a|?|b|%|c|2 .. (AS)" 4.17)

This is just the product of the probabilities for each particle to enter the counter
separately. They all act independently—the probability for one to enter does not
depend on how many others are also entering.

Now suppose that all the particles are identical Bose particles. For each set
of directions 1,2, 3, . . . there are many indistinguishable possibilities. If there were,
for instance, just three particles, we would have the following possibilities:

a—1 a—1 a—2
b—2 b—3 b—1
c—3 c— 2 c—3
a— 2 a—3 a—3
bh—3 b— 1 b—2
c— 1 c— 2 c— 1

There are six different combinations. With » particles, there are n! different, but
indistinguishable, possibilities for which we must add amplitudes. The probability
that n particles will be counted in n surface elements is then
|(11b2C3.. + a1b3(:2. —+ a2b1C3..

+ agbgcl.. + etc. + CtC.|2dS1 dSzdSa..dSn (418)

Once more we assume that all the directions are so close that we can set a, =
a, = = a = ay, and similarly for b, ¢c,. ; the probability of (4.18) becomes

lntabe .. |2dS, dS, . . .dS,. (4.19)
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When we integrate each dS over the area AS of the counter, each possible
product of surface elements is counted n! times; we correct for this by dividing
by n! and get

P,(Bose) = - [nlabe .. |* (ASY"
or
P,(Bose) = n! |abc . ..|%(AS)" (4.20)

Comparing this result with Eq. (4.17), we see that the probability of counting n
Bose particles together is n! greater than we would calculate assuming that the
particles were all distinguishable. We can summarize our result this way:

P,(Bose) = n! P,(different). (4.21)

Thus, the probability in the Bose case is larger by n! than you would calculate
assuming that the particles acted independently.

We can see better what this means if we ask the following question: What is
the probability that a Bose particle will go into a particular state when there are
already n others present? Let’s call the newly added particle w. If we have (n 4- 1)
particles, including w, Eq. (4.20) becomes

P, p1(Bose) = (n + ) |abc ... w|? (AS)" . (4.22)
We can write this as

P, 1(Bose) = {(n + 1)|w|® AS}n! |abc .. .|* AS"
or Pl
Pny1(Bose) = (n + 1)|w|® AS P,(Bose). (4.23)

We can look at this result in the following way: The number |w|2 AS is the
probability for getting particle w into the detector if no other particles were present;
P,(Bose) is the chance that there are already n other Bose particles present. So
Eq. (4.23) says that when there are n other identical Bose particles present, the
probability that one more particle will enter the same state is enhanced by the factor
(n + 1). The probability of getting a boson, where there are already n, is (n 4 1)
times stronger than it would be if there were none before. The presence of the other
particles increases the probability of getting one more.

4-4 Emission and absorption of photons

Throughout our discussion we have talked about a process like the scattering
of a-particles. But that is not essential ; we could have been speaking of the creation
of particles, as for instance the emission of light. When the light is emitted, a
photon is “created.” In such a case, we don’t need the incoming lines in Fig.
4-4; we can consider merely that there are n atoms a, b, ¢, . . . emitting light, as in
Fig. 4-5. So our result can also be stated: The probability that an atom will emit
a photon into a particular final state is increased by the factor (n + 1) if there are
already n photons in that state.

People like to summarize this result by saying that the amplitude to emit a
photon is increased by the factor v/n + 1 when there are already n photons
present. It is, of course, another way of saying the same thing if it is understood to
mean that this amplitude is just to be squared to get the probability.

It is generally true in quantum mechanics that the amplitude to get from any
condition ¢ to any other condition X is the complex conjugate of the amplitude to
get from X to ¢:

(x| é) = (@[0* 4.24)

We will learn about this law a little later, but for the moment we will just assume
it is true. We can use it to find out how photons are scattered or absorbed out of a
given state. We have that the amplitude that a photon will be added to some state,
say i, when there are already »n photons present is, say,

(n+ 1|n)=+n+ 1la, (4.25)
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where @ = (i|a) is the amplitude when there are no others present. Using Eq.
(4.24), the amplitude to go the other way—from (n 4+ 1) photons to n—is

nln+ 1) =+vn+ 1a* (4.26)

This isn’t the way people usually say it; they don’t like to think of going from
(n + 1) to n, but prefer always to start with » photons present. Then they say
that the amplitude to absorb a photon when there are n present—in other words,
to go fromn to (n — 1)—is

n— 1|n) = Vna*. .27

which is, of course, just the same as Eq. (4.26). Then they have trouble trying to
remember when to use v/n or v/n + 1. Here’s the way to remember: The factor
is always the square root of the largest number of photons present, whether it is
before or after the reaction. Equations (4.25) and (4.26) show that the law is
really symmetric—it only appears unsymmetric if you write it as Eq. (4.27).

There are many physical consequences of these new rules; we want to describe
one of them having to do with the emission of light. Suppose we imagine a situation
in which photons are contained in a box—you can imagine a box with mirrors for
walls. Now say that in the box we have n photons, all of the same state—the same
frequency, direction, and polarization—so they can’t be distinguished, and that
also there is an atom in the box that can emit another photon into the same state.
Then the probability that it will emit a photon is

(n + 1lal?, (4.28)
and the probability that it will absorb a photon is
nlaj?, 4.29)

where |a|? is the probability it would emit if no photons were present. We have
already discussed these rules in a somewhat different way in Chapter 42 of Vol. I.
Equation (4.29) says that the probability that an atom will absorb a photon and
make a transition to a higher energy state is proportional to the intensity of the
light shining on it. But, as Einstein first pointed out, the rate at which an atom will
make a transition downward has two parts. There is the probability that it will
make a spontaneous transition |a|?, plus the probability of an induced transition
n|a|?, which is proportional to the intensity of the light—that is, to the number of
photons present. Furthermore, as Einstein said, the coefficients of absorption and
of induced emission are equal and are related to the probability of spontaneous
emission. What we learn here is that if the light intensity is measured in terms of
the number of photons present (instead of as the energy per unit area, and per sec),
the coefficients of absorption of induced emission and of spontaneous emission are
all equal. This is the content of the relation between the Einstein coefficients
A and B of Chapter 42, Vol. I, Eq. (42.18).

4-5 The blackbody spectrum

We would like to use our rules for Bose particles to discuss once more the
spectrum of blackbody radiation (see Chapter 42, Vol. I). We will do it by finding
out how many photons there are in a box if the radiation is in thermal equilibrium
with some atoms in the box. Suppose that for each light frequency w, there are a
certain number N of atoms which have two energy states separated by the energy
AE = fw. See Fig. 4-6. We'll call the lower-energy state the “ground” state
and the upper state the “excited” state. Let N, and N, be the average numbers of
atoms in the ground and excited states; then in thermal equilibrium at the tem-
perature T, we have from statistical mechanics that

Ne — o BEIT _  —nw/kT
N= e e . (4.30)
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Each atom in the ground state can absorb a photon and go into the excited
state, and each atom in the excited state can emit a photon and go to the ground
state. In equilibrium, the rates for these two processes must be equal. The ratcs
are proportional to the probability for the event and to the number of atoms
present. Let’s let 7i be the average number of photons present in a given state
with the frequency w. Then the absorption rate from that state is Nj|a|?, and the
emission rate into that state is N.(7 + 1)|a|®. Setting the two rates equal, we have
that

Ng = N7 + 1). (4.31)
Combining this with Eq. (4.30), we have

IZ —#w/kT
=e .

-+

n
Solving for 7, we have
_ 1

Am e (4.32)
eﬂw/kT — 1

which is the mean number of photons in any state with frequency w, for a cavity in
thermal equilibrium. Since each photon has the energy #w, the energy in the
photons of a given state is 7Aw, or

hw

ST _

(4.33)

Incidentally, we once found a similar equation in another context [Chapter

41, Vol. I, Eq. (41.15)]. You remember that for any harmonic oscillator—such as Ef

a weight on a spring—the quantum mechanical energy levels are equally spaced Shw
with a separation Aw, as drawn in Fig. 4-7. If we call the energy of the nth level

nfiw, we find that the mean energy of such an oscillator is also given by Eq. (4.33). 4hw
Yet this equation was derived here for photons, by counting particles, and it gives

the same results. That is one of the marvelous miracles of quantum mechanics. 3hw
If one begins by considering a kind of state or condition for Bose particles which

do not interact with each other (we have assumed that the photons do not interact 2hw
with each other), and then considers that into this state there can be put either

Zero, or one, or two, . . . up to any number # of particles, one finds that this system fw
behaves for all quantum mechanical purposes exactly like a harmonic oscillator.

By such an oscillator we mean a dynamic system like a weight on a spring or a ! GROUND STATE 0

standing wave in a resonant cavity. And that is why it is possible to represent the
electromagnetic field by photon particles. From one point of view, we can analyze Fig. 4~7. The energy levels of a
the electromagnetic field in a box or cavity in terms of a lot of harmonic oscillators, harmonic oscillator.
treating each mode of oscillation according to quantum mechanics as a harmonic
oscillator. From a different point of view, we can analyze the same physics in
terms of identical Bose particles. And the results of both ways of working are
always in exact agreement. There is no way to make up your mind whether the
electromagnetic field is really to be described as a quantized harmonic oscillator or
by giving how many photons there are in each condition. The two views turn out
to be mathematically identicai. So in the future we can speak either about the
number of photons in a particular state in a box or the number of the energy level
associated with a particular mode of oscillation of the electromagnetic field. They
are two ways of saying the same thing. The same is true of photons in free space.
They are equivalent to oscillations of a cavity whose walls have receded to infinity.
We have computed the mean energy in any particular mode in a box at the
temperature 7; we need only one more thing to get the blackbody radiation law:
We need to know how many modes there are at each energy. (We assume that for
every mode there are some atoms in the box—or in the walls—which have energy
levels that can radiate into that mode, so that each mode can get into thermal
equilibrium.) The blackbody radiation law is usually stated by giving the energy
per unit volume carried by the light in a small frequency interval from wto w + Aw.
So we need to know how many modes there are in a box with frequencies in the
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modes in

interval Aw. Although this question continually comes up in quantum mechanics,
it is purely a classical question about standing waves.

We will get the answer only for a rectangular box. It comes out the same for a
box of any shape, but it’s very complicated to compute for the arbitrary case.
Also, we are only interested in a box whose dimensions are very large compared
with a wavelength of the light. Then there are billions and billions of modes;
there will be many in any small frequency interval Aw, so we can speak of the
“average number” in any Aw at the frequency w. Let’s start by asking how many
modes there are in a one-dimensional case—as for waves on a stretched string.
You know that each mode is a sine wave that has to go to zero at both ends;
in other words, there must be an integral number of half-wavelengths in the length
of the line, as shown in Fig. 4-8. We prefer to use the wave number k = 27/);
calling k; the wave number of the jth mode, we have that

ko = 9T,

i=7 (4.34)

where j is any integer. The separation 6k between successive modes is
ok = ki1 — kj

We want to assume that kL is so large that in a small interval Ak, there are many
modes. Calling AN the number of modes in the interval Ak, we have

Ak L

Aﬁl—aﬁk—;Ak‘

(4.35)
Now theoretical physicists working in quantum mechanics usually prefer to
say that there are one-half as many modes; they write

AN = L Ak.

5= (4.36)

We would like to explain why. They usually like to think in terms of travelling
waves—some going to the right (with a positive k) and some going to the left
(with a negative k). But a “mode” is a standing wave which is the sum of two waves,
one going in each direction. In other words, they consider each standing wave
as containing two distinct photon “‘states.” So if by A%, one prefers to mean the
number of photon states of a given k (where now k ranges over positive and nega-
tive values), one should then take A9 half as big. (All integrals must now go from
k = —x to k = +«, and the total number of states up to any given absolute
value of k will come out O.K.) Of course, we are not then describing standing
waves very well, but we are counting modes in a consistent way.

Now we want to extend the results to three dimensions. A standing wave in a
rectangular box must have an integral number of half-waves along each axis. The
situation for two of the dimensions is shown in Fig. 4-9. Each wave direction
and frequency is described by a vector wave number k, whose x, y, and z compo-
nents must satisfy equations like Eq. (4.34). So we have that

o JeT
ky = i

L
k=T,

_ JeT
k, = 1.

The number of modes with k, in an interval Ak, is, as before,

L,
2 A
and similarly for Ak, and Ak,. If we call A9U(k) the number of modes for a vector
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wave number k whose x-component is between k, and k, 4+ Ak,, whose y-com-
ponent is between k, and k, + Ak,, and whose z-component is between k, and
k, + Ak,, then

L.L,L,
Qw3

AU(K) = Ak, Ak, Ak, (4.37)

The product L.L,L, is equal to the volume ¥ of the box. So we have the important
result that for high frequencies (wavelengths small compared with the dimensions),
the number of modes in a cavity is proportional to the volume V of the box and
to the ““volume in k-space” Ak, Ak, Ak,. This result comes up again and again in
many problems and should be memorized:
d’k
dyk)y =V Oy (4.38)
Although we have not proved it, the result is independent of the shape of the box.
We will now apply this result to find the number of photon modes for photons
with frequencies in the range Aw. We are just interested in the energy in various
modes—but not interested in the directions of the waves. We would like to know
the number of modes in a given range of frequencies. In a vacuum the magnitude
of k is related to the frequency by

w
k| = o (4.39)
So in a frequency interval Aw, these are all the modes which correspond to k’s

with a magnitude between k and k + Ak, independent of the direction. The
“volume in k-space” between k and k + Ak is a spherical shell of volume

47k ? Ak,
The number of modes is then
Vark® Ak

However, since we are now interested in frequencies, we should substitute k¥ = w/c,
SO we get

(4.41)

There is one more complication. If we are talking about modes of an electro-
magnetic wave, for any given wave vector k there can be either of two polarizations
(at right angles to each other). Since these modes are independent, we must——for
light—double the number of modes. So we have

Vw?® A .
AN(w) = % (for light). (4.42)
We have shown, Eq. (4.33), that each mode (or each “state”) has on the

average the energy

Multiplying this by the number of modes, we get the energy AE in the modes that
lie in the interval Aw:

how Vo’ Aw i
eﬁw/kT -1 T203

AE = (4.43)

This is the law for the frequency spectrum of blackbody radiation, which we have
already found in Chapter 41 of Vol. I. The spectrum is plotted in Fig. 4-10. You
see now that the answer depends on the fact that photons are Bose particles, which
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have a tendency to try to get all into the same state (because the amplitude for
doing so is large). You will remember, it was Planck’s study of the blackbody
spectrum (which was a mystery to classical physics), and his discovery of the for-
mula in Eq. (4.43) that started the whole subject of quantum mechanics.

4-6 Liquid helium

Liquid helium has at low temperatures many odd properties which we cannot
unfortunately take the time to describe in detail right now, but many of them arise
from the fact that a helium atom is a Bose particle. One of the things is that liquid
helium flows without any viscous resistance. Tt is, in fact, the ideal “*dry” water
we have been talking about in one of the earlier chapters—provided that the
velocities are low enough. The reason is the following. In order for a liquid to have
viscosity, there must be internal energy losses; there must be some way for one part
of the liquid to have a motion that is different from that of the rest of the liquid.
This means that it must be possible to knock some of the atoms into states that
are different from the states occupied by other atoms. But at sufliciently low
temperatures, when the thermal motions get very small, all the atoms try to get
into the same condition. So, if some of them are moving along, then all the atoms
try to move together in the same state. There is a kind of rigidity to the motion,
and it is hard to break the motion up into irregular patterns of turbulence, as
would happen, for example, with independent particles. So in a liquid of Bose
particles, there is a strong tendency for all the atoms to go into the same state
which is represented by the \/n + 1 factor we found earlier. (For a bottle of
liquid helium = is, of course, a very large number!) This cooperative motion
does not happen at high temperatures, because then there is suflicient thermal
energy to put the various atoms into various different higher states. But at a
sufficiently low temperature there suddenly comes a moment in which all the helium
atoms try to go into the same state. The helium becomes a superfluid. Incidentally,
this phenomenon only appears with the isotope of helium which has atomic weight
4. For the helium isotope of atomic weight 3, the individual atoms are Fermi
particles, and the liquid is a normal fluid. Since superfluidity occurs only with
He?, it is evidently a quantum mechanical effect—due to the Bose nature of the
a-particle.

4-7 The exclusion principle

Fermi particles act in a completely different way. Let’s see what happens
if we try to put two Fermi particles into the same state. We will go back to our
original example and ask for the amplitude that two identical Fermi particles will
be scattered into almost exactly the same direction. The amplitude that particle
a will go in direction 1 and particle b will go in direction 2 is

(I a)}2]b),
whereas the amplitude that the outgoing directions will be interchanged is

@ la)l|b).

Since we have Fermi particles, the amplitude for the process is the difference of
these two amplitudes:

(L] a)2[b) — Q2|a)1]b). (4.44)

Let’s say that by “direction 1’ we mean that the particle has not only a certain
direction but also a given direction of its spin, and that “direction 2" is almost
exactly the same as direction 1 and corresponds to the same spin direction. Then
(1} a) and (2| a) are nearly equal. (This would not necessarily be true if the
outgoing states 1 and 2 did not have the same spin, because there might be some
reason why the amplitude would depend on the spin direction.) Now if we let
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Fig. 4-11. How atoms might look if electrons behaved like Bose particles.

directions 1 and 2 approach each other, the total amplitude in Eq. (4.44) becomes
zero. The result for Fermi particles is much simpler than for Bose particles. It
just isn’t possible at all for two Fermi particles—such as two electrons—to get
into exactly the same state. You will never find two electrons in the same position
with their two spins in the same direction. It is not possible for two electrons to
have the same momentum and the same spin directions. If they are at the same
location or with the same state of motion, the only possibility is that they must be
spinning opposite to each other.

What are the consequences of this? There are a number of most remarkable
effects which are a consequence of the fact that two Fermi particles cannot get into
the same state. In fact, almost all the peculiarities of the material world hinge on
this wonderful fact. The variety that is represented in the periodic table is basically
a consequence of this one rule.

Of course, we cannot say what the world would be like if this one rule were
changed, because it is just a part of the whole structure of quantum mechanics, and it
is impossible to say what else would change if the rule about Fermi particles were
different. Anyway, let’s just try to see what would happen if only this one rule were
changed. First, we can show that every atom would be more or less the same.
Let's start with the hydrogen atom. It would not be noticeably affected. The
proton of the nucleus would be surrounded by a spherically symmetric electron
cloud, as shown in Fig. 4-11(a). As we have described in Chapter 2, the electron
is attracted to the center, but the uncertainty principle requires that there be
a balance between the concentration in space and in momentum. The balance
means that there must be a certain energy and a certain spread in the electron
distribution which determines the characteristic dimension of the hydrogen atom.

Now suppose that we have a nucleus with two units of charge, such as the
helium nucleus. This nucleus would attract two electrons, and if they were Bose
particles, they would—except for their electric repulsion—both crowd in as close
as possible to the nucleus. A helium atom might look as shown in part (b) of the
figure. Similarly, a lithium atom which has a triply charged nucleus would have
an electron distribution like that shown in part (c) of Fig. 4-11. Every atom would
look more or less the same—a little round ball with all the electrons sitting near
the nucleus, nothing directional and nothing complicated.

Because electrons are Fermi particles, however, the actual sitnation is quite
different. For the hydrogen atom the situation is essentially unchanged. The only
difference is that the electron has a spin which we indicate by the little arrow in
Fig. 4-12(a). In the case of a helium atom, however, we cannot put two electrons
on top of each other. But wait, that is only true if their spins are the same. Two
electrons can occupy the same state if their spins are opposite. So the helium atom
does not look much different either. Tt would appear as shown in part (b) of
Fig. 4-12. For lithium, however, the situation becomes quite different. Where
can we put the third electron? The third electron cannot go on top of the other
two because both spin directions are occupied. (You remember that for an electron
or any particle with spin 1/2 there are only two possible directions for the spin.)
The third electron can’t go near the place occupied by the other two, so it must
take up a special condition in a different kind of state farther away from the
nucleus in part (c) of the figure. (We are speaking only in a rather rough way here,
because in reality all three electrons are identical; since we cannot really distinguish
which one is which, our picture is only an approximate one.)
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Fig. 4-13. The hydrogen molecule.

Fig. 4-14. Helium with one electron
in a higher energy state.

Fig. 4-15. The likely mechanism in a
ferromagnetic crystal; the conduction
electron is antiparallel to the unpaired
inner electrons.

Now we can begin to see why different atoms will have different chemical
properties. Because the third electron in lithium is farther out, it is relatively more
loosely bound. It is much easier to remove an electron from lithium than from
helium. (Experimentally, it takes 25 volts to ionize helium but only 5 volts to
ionize lithium.) This accounts for the valence of the lithium atom. The directional
properties of the valence have to do with the pattern of the waves of the outer
electron, which we will not go into at the moment. But we can already see the im-
portance of the so-called exclusion principle—which states that no two electrons
can be found in exactly the same state (including spin).

The exclusion principle is also responsible for the stability of matter on a
large scale. We explained earlier that the individual atoms in matter did not
collapse because of the uncertainty principle; but this does not explain why it is
that two hydrogen atoms can’t be squeezed together as close as you want—why
it is that all the protons don’t get close together with one big smear of electrons
around them. The answer is, of course, that since no more than two electrons—
with opposite spins—can be in roughly the same place, the hydrogen atoms must
keep away from each other. So the stability of matter on a large scale is really a
consequence of the Fermi particle nature of the electrons.

Of course, if the outer electrons on two atoms have spins in opposite directions,
they can get close to each other. This is, in fact, just the way that the chemical
bond comes about. It turns out that two atoms together will generally have the
lowest energy if there is an electron between them. It is a kind of an electrical
attraction for the two positive nuclei toward the electron in the middle. Tt is
possible to put two electrons more or less between the two nuclei so long as their
spins are opposite, and the strongest chemical binding comes about this way.
There is no stronger binding, because the exclusion principle does not allow there
to be more than two electrons in the space between the atoms. We expect the
hydrogen moleciile to look more or less as shown in Fig. 4-13.

We want to mention one more consequence of the exclusion principle. You
remember that if both electrons in the helium atom are to be close to the nucleus,
their spins are necessarily opposite. Now suppose that we would like to try to
arrange to have both electrons with the same spin—as we might consider doing by
putting on a fantastically strong magnetic field that would try to line up the spins
in the same direction. But then the two electrons could not occupy the same state
in space. One of them would have to take on a different geometrical position, as
indicated in Fig. 4-14. The electron which is located farther from the nucleus has
less binding energy. The energy of the whole atom is therefore quite a bit higher.
In other words, when the two spins are opposite, there is a much stronger total
attraction.

So, there is an apparent, enormous force trying to line up spins opposite to
each other when two electrons are close together. If two electrons are trying to go
in the same place, there is a very strong tendency for the spins to become lined
opposite. This apparent force trying to orient the two spins opposite to each other
is much more powerful than the tiny force between the two magnetic moments of
the electrons. You remember when we were speaking of ferromagnetism there was
the mystery of why the electrons in different atoms had a strong tendency to line
up parallel. Although there is still no quantitative explanation, it is believed that
what happens is that the electrons around the core of one atom interact through
the exclusion principle with the outer electrons which have become free to wander
throughout the crystal. This interaction causes the spins of the free electrons and
the inner electrons to take on opposite directions. But the free electrons and the
inner atomic electrons can only be opposite provided all the inner electrons have
the same spin direction, as indicated in Fig. 4-15. It seems probable that it is the
effect of the exclusion principle acting indirectly through the free electrons that
gives rise to the strong aligning forces responsible for ferromagnetism.

We will mention one further example of the influence of the exclusion principle.
We have said earlier that the nuclear forces are the same between the neutron and
the proton, between the proton and the proton, and between the proton and the
neutron. Why is it then that a proton and a neutron can stick together to make a
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deuterium nucleus, whereas there is no nucleus with just two protons or with just
two neutrons? The deuteron is, as a matter of fact, bound by an energy of about
2.2 million volts, yet, there is no corresponding binding between a pair of protons
to make an isotope of helium with the atomic weight 2. Such nuclei do not exist.
The combination of two protons does not make a bound state.

The answer is a result of two effects: first, the exclusion principle; and second,
the fact that the nuclear forces are somewhat sensitive to the direction of spin. The
force between a neutron and a proton is attractive and somewhat stronger when
the spins are parallel than when they are opposite. It happens that these forces
are just different enough that a deuteron can only be made if the neutron and
proton have their spins parallel; when their spins are opposite, the attraction is
not quite strong enough to bind them together. Since the spins of the neutron and
proton are each one-half and are in the same direction, the deuteron has a spin of
one. We know, however, that two protons are not allowed to sit on top of each
other if their spins are parallel. If it were not for the exclusion principle, two
protons would be bound, but since they cannot exist at the same place and with
the same spin directions, the He? nucleus does not exist. The protons could come
together with their spins opposite, but then there is not enough binding to make
a stable nucleus, because the nuclear force for opposite spins is too weak to
bind a pair of nucleons. The attractive force between neutrons and protons of
opposite spins can be seen by scattering experiments. Similar scattering experiments
with two protons with parallel spins show that there is the corresponding attraction.
So it is the exclusion principle that helps explain why deuterium can exist when
He? cannot.
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Spin One

5-1 Filtering atoms with a Stern-Gerlach apparatus

In this chapter we really begin the quantum mechanics proper—in the sense
that we are going to describe a quantum mechanical phenomenon in a completely
quantum mechanical way. We will make no apologies and no attempt to find con-
nections to classical mechanics. We want to talk about something new in a new
language. The particular situation which we are going to describe is the behavior
of the so-called quantization of the angular momentum, for a particle of spin one.
But we won’t use words like “angular momentum” or other concepts of classical
mechanics until later. We have chosen this particular example because it is rela-
tively simple, although not the simplest possible example. It is sufficiently com-
plicated that it can stand as a prototype which can be generalized for the description
of all quantum mechanical phenomena. Thus, although we are dealing with a
particular example, all the laws which we mention are immediately generalizable,
and we will give the generalizations so that you will see the general characteristics
of a quantum mechanical description. We begin with the phenomenon of the
splitting of a beam of atoms into three separate beams in a Stern-Gerlach experi-
ment.

You remember that if we have an inhomogeneous magnetic field made by a
magnet with a pointed pole tip and we send a beam through the apparatus, the
beam of particles may be split into a number of beams—the number depending
on the particular kind of atom and its state. We are going to take the case of an
atom which gives three beams, and we are going to call that a particle of spin one.
You can do for yourself the case of five beams, seven beams, two beams, etc.—you
just copy everything down and where we have three terms, you will have five
terms, seven terms, and so on.

Imagine the apparatus drawn schematically in Fig. 5-1. A beam of atoms
(or particles of any kind) is collimated by some slits and passes through a non-
uniform field. Let’s say that the beam moves in the y-direction and that the
magnetic field and its gradient are both in the z-direction. Then, looking from the
side, we will see the beam split vertically into three beams, as shown in the figure.
Now at the output end of the magnet we could put small counters which count
the rate of arrival of particles in any one of the three beams. Or we can block
off two of the beams and let the third one go on.

Suppose we block off the lower two beams and let the top-most beam go on
and enter a second Stern-Gerlach apparatus of the same kind, as shown in Fig.
5-2. What happens? There are nor three beams in the second apparatus; there
is only the top beam.t This is what you would expect if you think of the second
apparatus as simply an extension of the first. Those atoms which are being pushed
upward continue to be pushed upward in the second magnet.

5-1 Filtering atoms with a
Stern-Gerlach apparatus

5-2 Experiments with filtered atoms
5-3 Stern-Gerlach filters in series
5-4 Base states

5-5 Interfering amplitudes

5-6 The machinery of quantum
mechanics

5-7 Transforming to a different base

5-8 Other situations

Review: Chapter 35, Vol. I, Para-
magnetism and Magnetic Res-
onance. For your convenience
this chapter is reproduced in
the Appendix of this volume.
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Fig. 5-1. In a Stern-Gerlach experi-
ment, atoms of spin one are split into
three beams.
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| Fig. 5-2. The atoms from one of the
J beams are sent into a second identical
apparatus.

T We are assuming that the deflection angles are very small.
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Fig. 5-3. (a) An imagined modification of a Stern-Gerlach apparatus. (b) The paths of spin-one atoms.

You can see then that the first apparatus has produced a beam of *‘purified”
objects—atoms that get bent upward in the particular inhomogeneous field. The
atoms, as they enter the original Stern-Gerlach apparatus, are of three ‘‘varieties,”
and the three kinds take different trajectories. By filtering out all but one of the
varieties, we can make a beam whose future behavior in the same kind of apparatus
is determined and predictable. We will call this a filtered beam, or a polarized
beam, or a beam in which the atoms all are known to be in a definite state.

For the rest of our discussion, it will be more convenient if we consider a
somewhat modified apparatus of the Stern-Gerlach type. The apparatus looks
more complicated at first, but it will make all the arguments simpler. Anyway,
since they are only “thought experiments,” it doesn’t cost anything to complicate
the equipment. (Incidentally, no one has ever done all of the experiments we will
describe in just this way, but we know what would happen from the laws of quantum
mechanics, which are, of course, based on other similar experiments. These other
experiments are harder to understand at the beginning, so we want to describe
some idealized—but possible—experiments.)

Figure 5-3(a) shows a drawing of the *“modified Stern-Gerlach apparatus”
we would like to use. It consists of a sequence of three high-gradient magnets.
The first one (on the left) is just the usual Stern-Gerlach magnet and splits the
incoming beam of spin-one particles into three separate beams. The second
magnet has the same cross section as the first, but is twice as long and the polarity
of its magnetic field is opposite the field in magnet 1. The second magnet pushes
in the opposite direction on the atomic magnets and bends their paths back toward
the axis, as shown in the trajectories drawn in the lower part of the figure. The
third magnet is just like the first, and brings the three beams back together again,
so that leaves the exit hole along the axis. Finally, we would like to imagine that
in front of the hole at A there is some mechanism which can get the atoms started
from rest and that after the exit hole at B there is a decelerating mechanism that
brings the atoms back to rest at B. That is not essential, but it will mean that in
5-2



our analysis we won’t have to worry about including any effects of the motion as
the atoms come out, and can concentrate on those matters having only to do with
the spin. The whole purpose of the “improved” apparatus is just to bring all the
particles to the same place, and with zero speed.

Now if we want to do an experiment like the one in Fig. 5-2, we can first
make a filtered beam by putting a plate in the middle of the apparatus that blocks
two of the beams, as shown in Fig. 5-4. If we now put the polarized atoms through
a second identical apparatus, all the atoms will take the upper path, as can be
verified by putting similar plates in the way of the various beams of the second
S filter and seeing whether particles get through.

Fig. 5-4. The “improved” Stern-Gerlach apparatus as a filter.

Suppose we call the first apparatus by the name S. (We are going to consider
all sorts of combinations, and we will need labels to keep things straight.) We will
say that the atoms which take the top path in S are in the “plus state with respect
to S”; the ones which take the middle path are in the “zero state with respect to
S$”; and the ones which take the lowest path are in the “minus state with respect
to 5. (In the more usual language we would say that the z-component of the
angular momentum was -+ 1%, 0, and — 1%, but we are not using that language now.)
Now in Fig. 5-4 the second apparatus is oriented just like the first, so the filtered
atoms will all go on the upper path. Or if we had blocked off the upper and lower
beams in the first apparatus and let only the zero state through, all the filtered
atoms would go through the middle path of the second apparatus. And if we
had blocked off all but the lowest beam in the first, there would be only a low
beam in the second. We can say that in each case our first apparatus has
produced a filtered beam in a pure state with respect to S (+, 0, or —), and we
can test which state is present by putting the atoms through a second, identical
apparatus.

We can make our second apparatus so that it transmits only atoms of a
particular state—by putting masks inside it as we did for the first one—and then
we can test the state of the incoming beam just by seeing whether anything comes
out the far end. For instance, if we block off the two lower paths in the second
apparatus, 100 percent of the atoms will still come through; but if we block off the
upper path, nothing will get through.

To make this kind of discussion easier, we are going to invent a shorthand
symbol to represent one of our improved Stern-Gerlach apparatuses. We will let
the symbol

+
0 (5.1)

s

stand for one complete apparatus. (This is not a symbol you will ever find used in
quantum mechanics; we’ve just invented it for this chapter. It is simply meant to
be a shorthand picture of the apparatus of Fig. 5-3.) Since we are going to want
to use several apparatuses at once, and with various orientations, we will identify
each with a letter underneath. So the symbol in (5.1) stands for the apparatus S.
When we block off one or more of the beams inside, we will show that by some
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(a)

(b}

(c)

Fig. 5-5. Special shorthand symbols

for Stern-Gerlach type filters.

vertical bars indicating which beam is blocked, like this:

+
{o I . (5.2)

S

The various possible combinations we will be using are shown in Fig. 5-5.
If we have two filters in succession (as in Fig. 5-4), we will put the two sym-
bols next to each other, like this:

+ +
0 I 0;}- (5.3)
S S

For this setup, everything that comes through the first also gets through the second.
In fact, even if we block off the “zero” and “minus” channels of the second

apparatus, so that we have
+ +
0 | 0 | , .4

S S

we still get 100 percent transmission through the second apparatus. On the other

hand, if we have
+ +
0 I oft: (5.5)

8 S

nothing at all comes out of the far end. Similarly,

U

would give nothing out. On the other hand,
+ +
0 0 5.7

S N

would be just equivalent to

by itself.

Now we want to describe these experiments quantum mechanically. We will
say that an atom is in the (4 .S) state if it has gone through the apparatus of Fig.
5-5(b), that it is in a (0 S) state if it has gone through (c¢), and in a (—JS) state if
it has gone through (d).f Then we let (b | a) be the amplitude that an atom which
is in state « will get through an apparatus into the b state. We can say: (b | a) is
the amplitude for an atom in the state a to ger into the state b. The experiment
(5.4) gives us that

(+S[+8) =1,

t Read: (+S) = “plus-S”; (08) = “zero-S”; (—S) = “minus-S.”
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whereas (5.5) gives us

(=S|+S) = 0.
Similarly, the result of (5.6) is

(+S8]=5) =0,
and of (5.7) is

(=S| =8 =1

As long as we deal only with “pure” states—that is, we have only one channel
open—there are nine such amplitudes, and we can write them in a table:

from
+S 0SS -S§
to +S 1 0 0
0S 0 1 0
) 0 0 1

(5.8)

This array of nine numbers—called a matrix—summarizes the phenomena we’ve
been describing.

5-2 Experiments with filtered atoms

Now comes the big question: What happens if the second apparatus is tipped
to a different angle, so that its field axis is no longer parallel to the first? It
could be not only tipped, but also pointed in a different direction—for instance,
it could take the beam off at 90° with respect to the original direction. To take it
easy at first, let’s first think about an arrangement in which the second Stern-
Gerlach experiment is tilted by some angle o about the y-axis, as shown in Fig.
5-6. We'll call the second apparatus 7. Suppose that we now set up the following
experiment:

+ +
B[
S T

or the experiment:
+ +|
0 I 0 ¢
s T

What comes out at the far end in these cases?

The answer is this: If the atoms are in a definite state with respect to S, they
are not in the same state with respect to 7—a (+.S5) state is not also a (+T7) state.
There is, however, a certain amplitude to find the atom in a (+7T) state—or a (0 T)
state or a (—T7) state.

In other words, as careful as we have been to make sure that we have the
atoms in a definite condition, the fact of the matter is that if it goes through an
apparatus which is tilted at a different angle it has, so to speak, to “reorient”

v

\

ol ? /
Fig. 5-6. Two Stern-Gerlach type

filters in series; the second is tilted at the
angle « with respect to the first.
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itself—which it does, don’t forget, by luck. We can put only one particle through
at a time, and then we can only ask the question: What is the probability that it
gets through? Some of the atoms that have gone through .S will end in a (4-7)
state, some of them will end ina (0 7T), and some in a (—T ') state—all with different
odds. These odds can be calculated by the absolute squares of complex amplitudes;
what we want is some mathematical method, or quantum mechanical description,
for these amplitudes. What we need to know are various quantities like

by which we mean the amplitude that an atom initially in the (4 S) state can get
into the (—7) condition (which is not zero unless T and S are lined up parallel
to each other). There are other amplitudes like

(+T|0S8), or (0T|-S), etc.

There are, in fact, nine such amplitudes—another matrix—that a theory of particles
should tell us how to calculate. Just as F = ma tells us how to calculate what hap-
pens to a classical particle in any circumstance, the laws of quantum mechanics
permit us to determine the amplitude that a particle will get through a particular
apparatus. The central problem, then, is to be able to calculate—for any given
tilt angle «, or in fact for any orientation whatever—the nine amplitudes:

(=T|+S), (=T|0S), (=T | —=S).

We can already figure out some relations among these amplitudes. First,
according to our definitions, the absolute square

K+T|+5)

is the probability that an atom in a (4 S) state will enter a (4-T') state. We will often
find it more convenient to write such squares in the equivalent form

(+T [ +S(FT | +5)*.

In the same notation the number
(0T | +SXOT [ +S)*

is the probability that a particle in the (4.S) state will enter the (0 T) state, and
(=T | +8X~T| +8)*

is the probability that it will enter the (—7) state. But the way our apparatuses
are made, every atom which enters the T apparatus must be found in some one of
the three states of the T apparatus—there’s nowhere else for a given kind of atom
to go. So the sum of the three probabilities we’ve just written must be equal to
100 percent. We have the relation

(T [+S)FT | +S)* + (0T | +SX0T | +8)*
F (=T |+SU~T|+S* = 1. (510

There are, of course, two other such equations that we get if we start with a (0.S)
or a (—S) state. But they are all we can easily get, so we’ll go on to some other
general questions.

5-3 Stern-Gerlach filters in series

Here is an interesting question: Suppose we had atoms filtered into the (4-S)
state, then we put them through a second filter, say into a (0 T) state, and then
through another +S filter. (We’ll call the last filter S’ just so we can distinguish
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it from the first S-fiter.) Do the atoms remember that they were once in a +S
state? In other words, we have the following experiment:

{1t

N T S’

We want to know whether all those that get through T also get through S'. They
do not. Once they have been filtered by 7, they do not remember in any way that
they were in a (4 S) state when they entered 7. Note that the second S apparatus
in (5.11) is oriented exactly the same as the first, so it is still an S-type filter.
The states filtered by S’ are, of course, still (+5), (0 S), and (—$).

The important point is this: If the T filter passes only one beam, the Sfraction
that gets through the second S filter depends only on the setup of the T filter, and
is completely independent of what precedes it. The fact that the same atoms were
once sorted by an S filter has no influence whatever on what they will do once they
have been sorted again into a pure beam by a T apparatus. From then on, the
probability for getting into different states is the same no matter what happened
before they got into the T apparatus.

As an example, let’s compare the experiment of (5.11) with the following

experiment:
0 | 0 | 0 I (5.12)

S T S’

in which only the first S'is changed. Let’s say that the angle o (between S and 7)
is such that in experiment (5.11) one-third of the atoms that get through T also
get through S’. In experiment (5.12), although there will, in general, be a different
number of atoms coming through 7, the same fraction of these—one-third—will
also get through &,

We can, in fact, show from what you have learned earlier that the fraction of
the atoms that come out of 7 and get through any particular S’ depends only on
T and &', not on anything that happened earlier. Let’s compare experiment

(5.12) with
0 0 0 V- (5.13)
-1 -1 -1

8 T 8’

The amplitude that an atom that comes out of S will also get through both T and
S is, for the experiments of (5.12),

(+S|0T)0T|0S).
The corresponding probability is
(+S1oTX0T[08)* = (+S|0T)|* [(0T]0S)[2
The probability for experiment (5.13) is
KOS[0TX0T|0S)? = (0S[0T)*[0T|0S)2

The ratio is
{0 S|0T)?
K+S10T)[2

and depends only on T and §’, and not at all on which beam (+S5),(08),or (—5)
is selected by S. (The absolute numbers may go up and down together depending
on how much gets through 7.) We would, of course, find the same result if we
compared the probabilities that the atoms would go into the plus or the minus
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states with respect to S’, or the ratio of the probabilities to go into the zero or
minus states.

In fact, since these ratios depend only on which beam is allowed to pass
through T, and not on the selection made by the first S filter, it is clear that we
would get the same result even if the last apparatus were not an S filter. If we use
for the third apparatus—which we will now call R—one rotated by some arbitrary
angle with respect to 7, we would find that a ratiosuchas [{0 R |0 T)[2/[(+R |0 T)|2
was independent of which beam was passed by the first filter S.

5-4 Base states

These results illustrate one of the basic principles of quantum mechanics:
Any atomic system can be separated by a filtering process into a certain set of
what we will call base states, and the future behavior of the atoms in any single
given base state depends only on the nature of the base state—it is independent of
any previous history.}t The base states depend, of course, on the filter used; for
instance, the three states (47), (0 7T), and (—T) are one set of base states; the three
states (+.5), (0 S), and (—S) are another. There are any number of possibilities
each as good as any other.

We should be careful to say that we are considering good filters which do
indeed produce “pure” beams. If, for instance, our Stern-Gerlach apparatus didn’t
produce a good separation of the three beams so that we could not separate them
cleanly by our masks, then we could not make a complete separation into base
states. We can tell if we have pure base states by seeing whether or not the beams
can be split again in another filter of the same kind. If we have a pure (+7) state,
for instance, all the atoms will go through

and none will go through

or through

T

Our statement about base states means that it is possible to filter to some pure state,
so that no further filtering by an identical apparatus is possible.

We must also point out that what we are saying is exactly true only in rather
idealized situations. In any real Stern-Gerlach apparatus, we would have to worry
about diffraction by the slits that could cause some atoms to go into states corre-
sponding to different angles, or about whether the beams might contain atoms with
different excitations of their internal states, and so on. We have idealized the
situation so that we are talking only about the states that are split in a magnetic
field; we are ignoring things having to do with position, momentum, internal
excitations, and the like. In general, one would need to consider also base states
which are sorted out with respect to such things algo. But to keep the concepts
simple, we are considering only our set of three states, which is sufficient for the
exact treatment of the idealized situation in which the atoms don’t get torn up in

t We do not intend the word “base state” to imply anything more than what is said
here. They are not to be thought of as “basic” in any sense. We are using the word base
with the thought of a basis for a description, somewhat in the sense that one speaks of
“numbers to the base ten.”
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going through the apparatus, or otherwise badly treated, and come to rest when
they leave the apparatus.

You will note that we always begin our thought experiments by taking a
filter with only one channel open, so that we start with some definite base state.
We do this because atoms come out of a furnace in various states determined at
random by the accidental happenings inside the furnace. (It gives what is called
an “unpolarized” beam.) This randomness involves probabilities of the ‘““classical”
kind—as in coin tossing—which are different from the quantum mechanical
probabilities we are worrying about now.. Dealing with an unpolarized beam
would get us into additional complications that are better to avoid until after we
understand the behavior of polarized beams. So don’t try to consider at this point
what happens if the first apparatus lets more than one beam through. (We will
tell you how you can handle such cases at the end of the chapter.)

Let’s now go back and see what happens when we go from a base state for
one filter to a base state for a different filter. Suppose we start again with

+} +1
I Gy
The atoms which come out of T are in the base state (0 7T) and have no memory
that they were once in the state (+.5). Some people would say that in the filtering
by T we have “lost the information” about the previous state (+.S) because we
have “disturbed” the atoms when we separated them into three beams in the
apparatus 7. But that is not true. The past information is not lost by the separation
into three beams, but by the blocking masks that are put in—as we can see by the
following set of experiments.

We start with a S filter and will call N the number of atoms that come
through it. If we follow this by a 0 T filter, the number of atoms that come out is
some fraction of the original number, say aN. If we then put another 4 S filter,

only some fraction 8 of these atoms will get to the far end. We can indicate this
in the following way:

+ +1 +
0| N,{0 ;v ol BaN, . (5.14)
-l

If our third apparatus S’ selected a different state, say the (0 S) state, a different
fraction, say v, would get through.t We would have

+ +1 +1
0| N,{0 p eN {0 p XeN. (5.15)
- -1) -

N T S’

R

Now suppose we repeat these two experiments but remove all the masks from 7.
We would then find the remarkable results as follows:

+ + +
o} ¥, {o} N, OI N, (5.16)
S T S’
+ + +1
oI N otot ¥ o } o, (5.17)
S T S’

+ In terms of our earlier notation & = [{0T| + $)|2, 8 = |[( + S[0T)|%, and ¥ =
i{os[oT)|2.
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All the atoms get through $’ in the first case, but none in the second case! This is
one of the great laws of quantum mechanics. That nature works this way is not
self-evident, but the results we have given correspond for our idealized situation
to the quantum mechanical behavior observed in innumerable experiments.

5-5 Interfering amplitudes

How can it be that in going from (5.15) to (5.17)—by opening more channels
—we let fewer atoms through? This is the old, deep mystery of quantum mechanics
—the interference of amplitudes. It’s the same kind of thing we first saw in the
two-slit interference experiment with electrons. We saw that we could get fewer
electrons at some places with both slits open than we got with one slit open. It
works quantitatively this way. We can write the amplitude that an atom will get
through T and S’ in the apparatus of (5.17) as the sum of three amplitudes, one
for each of the three beams in 7'; the sum is equal to zero:

(0S| +T)(+T| +S) + (0S[0TXOT| +58) + (0S| =TX~T| +8) = 0.
(5.18)

None of the three individual amplitudes is zero—for example, the absolute square
of the second amplitude is Ya, see (5.15)—but the sum is zero. We would have
also the same answer if S’ were set to select the (—S) state. However, in the setup
of (5.16), the answer is different. If we call a the amplitude to get through T and
S’, in this case we havet

@ = (+S| +T)(HT| +S) + (+S5|0T}0T| +5)
(S| =TU=T[+S) = . (5.19)

In the experiment (5.16) the beam has been split and recombined. Humpty
Dumpty has been put back together again. The information about the original
(4 S) state is retained—it is just as though the T" apparatus were not there at all.
This is true whatever is put after the “wide-open” T apparatus. We could follow
it with an R filter—a filter at some odd angle—or anything we want. The answer
will always be the same as if the atoms were taken directly from the first S filter.

So this is the important principle: A T filter—or any filter—with wide-open
masks produces no change at all. We should make one additional condition. The
wide-open filter must not only transmit all three beams, but it must also not produce
unequal disturbances on the three beams. For instance, it should not have a strong
electric field near one beam and not the others. The reason is that even if this
extra disturbance would still Jet all the atoms through the filter, it could change the
phases of some of the amplitudes. Then the interference would be changed, and
the amplitudes in Egs. (5.18) and (5.19) would be different. We will always
assume that there are no such extra disturbances.

Let’s rewrite Egs. (5.18) and (5.19) in an improved notation. We will let
i stand for any one of the three states (4-7"), (0 T), or (—T'); then the equations can
be written:

> (0S|iXi|+8) =0 (5.20)
all 7

and
ST S +S) = 1. (5.21)
all 7

Similarly, for an experiment where S’ is replaced by a completely arbitrary filter
R, we have

+ + +
0 0 ot (5.22)
S ; R

+ We really cannot conclude from the experiment that a = 1, but only that |a]2 = I,
so a might be %, but it can be shown that the choice § = 0 represents no real loss of
generality.
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The results will always be the same as if the T apparatus were left out and we had
only

+ +
Ity
8 R
Or, expressed mathematically,
> (+RIiNi| +8) = (+R|+S). (5.23)

all ¢

This is our fundamental law, and it is generally true so long as i stands for the three
base states of any filter.
You will notice that in the experiment (5.22) there is no special relation of
S and R to T. Furthermore, the arguments would be the same no matter what
states they selected. To write the equation in a general way, without having to
refer to the specific states selected by .S and R, let’s call ¢ (‘“phi”) the state prepared
by the first filter (in our special example, +.5) and x (“khi”) the state tested by
the final filter (in our example, +R). Then we can state our fundamental law of
Eq. (5.23) in the form
xle) = 23 xlixile), (5.24)

all 7

where i is to range over the three base states of some particular filter.

We want to emphasize again what we mean by base states. They are like the
three states which can be selected by one of our Stern-Gerlach apparatuses. One
condition is that if you have a base state, then the future is independent of the past.
Another condition is that if you have a complete set of base states, Eq. (5.24) is
true for any set of beginning and ending states ¢ and x. There is, however, no
unique set of base states. We began by considering base states with respect to a
particular apparatus T. We could equally well consider a different set of base
states with respect to an apparatus .S, or with respect to R, etc.} We usually speak
of the base states “in a certain representation.”

Another conditior on a set of base states in any particular representation is
that they are all completely different. By that we mean that if we have a (47
state, there is no amplitude for it to go into a (0 T) or a (—7T) state. If welet i and
Jj stand for any two base states of a particular set, the general rules discussed in
connection with (5.8) are that

(=0

for all ; and j that are not equal. Of course, we know that
@il =1
These two equations are usually written as
Gl = 8 (525

where §;; (the “Kronecker delta”) is a symbol that is defined to be zero for i % j,
and to be one for i = j.

Equation (5.25) is not independent of the other laws we have mentioned.
It happens that we are not particularly interested in the mathematical problem of
finding the minimum set of independent axioms that will give all the laws as conse-
quences.] We are satisfied if we have a set that is complete and not apparently
inconsistent. We can, however, show that Eqs. (5.25) and (5.24) are not inde-
pendent. Suppose we let ¢ in Eq. (5.24) represent one of the base states of the

t In fact, for atomic systems with three or more base states, there exist other kinds of
filters—quite different from a Stern-Gerlach apparatus—which can be used to get more
choices for the set of base states (each set with the same number of states).

1 Redundant rruth doesn’t bother us!
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same set as 7, say the jth state; then we have
XLy =25 iyl p.

But Eq. (5.25) says that (i | ) is zero unless / = j, so the sum becomes just (X | j)
and we have an identity, which shows that the two laws are not independent.

We can see that there must be another relation among the amplitudes if both
Egs. (5.10) and (5.24) are true. Equation (5.10) is

(FT+SHAT[+8* + (0T | +SYOT | +8S)* + (=T | +SY—T| +5* = 1.

If we write Eq. (5.24), letting both ¢ and X be the state (4-S), the left-hand side
is (+S| 45), which is clearly =1; so we get once more Eq. (5.19),

(FSTHTHT+S) + (+S]OTHOT|+8) + (+S| =TX=T|+S) = 1.

These two equations are consistent (for all relative orientations of the 7 and S
apparatuses) only if
(+S|+T) = (+T| +S)*,
(+S]0T) = (OT | +S)*,

(S| =T) = (=T| +5*
And it follows that for any states ¢ and X,
@1% = (x| ™. (5.26)

If this were not true, probability wouldn’t be “conserved,” and particles would
get “lost.”

Before going on, we want to summarize the three important general laws about
amplitudes. They are Eqgs. (5.24), (5.25), and (5.26):

I (li) = &,
I (xX[e) = D (x|i)ile), (5.27)

all 7
I (e |x) = (x|¢)"

In these equations the i and j refer to all the base states of some one representation,
while ¢ and X represent any possible states of the atom. It is important to note that
IT is valid only if the sum is carried out over a/l the base states of the system (in
our case, three: 4T, 07, —T). These laws say nothing about what we should
choose for a base for our set of base states. We began by using a T apparatus,
which is a Stern-Gerlach experiment with some arbitrary orientation; but any other
orientation, say W, would be just as good. We would have a different set of states
to use for / and j, but all the laws would still be good—there is no unique set. One
of the great games of quantum mechanics is to make use of the fact that things
can be calculated in more than one way.

5-6 The machinery of quantum mechanics

We want to show you why these laws are useful. Suppose we have an atom in
a given condition (by which we mean that it was prepared in a certain way), and
we want to know what will happen to it in some experiment. In other words, we
start with our atom in the state ¢ and want to know what are the odds that it will go
through some apparatus which accepts atoms only in the condition x. The laws
say that we can describe the apparatus completely in terms of three complex num-
bers (x | i), the amplitudes for each base state to be in the condition x; and that
we can tell what will happen if an atom is put into the apparatus if we describe the
state of the atom by giving three numbers (i | ¢), the amplitudes for the atom in its
original condition to be found in each of the three base states. This is an important
idea.
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Let’s consider another illustration. Think of the following problem: We start
with an S apparatus; then we have a complicated mess of junk, which we can call
A, and then an R apparatus—Iike this:

+ +1
0 A 0 ¢- (5.28)
- -1

S R

By A we mean any complicated arrangement of Stern-Gerlach apparatuses with
masks or half-masks, oriented at peculiar angles, with odd electric and magnetic
fields . . . almost anything you want to put. (It’s nice to do thought experiments—
you don’t have to go to all the trouble of actually building the apparatus!) The
problem then is: With what amplitude does a particle that enters the section A
in a (+3S) state come out of 4 in the (0 R) state, so that it will get through the last
R filter? There is a regular notation for such an amplitude; it is

(OR|A4]|+S).
As usual, it is to be read from right to left (like Hebrew):
(finish | through | start).
If by chance 4 doesn’t do anything—but is just an open channel—then we write
(OR|1]+S) = (OR|+S); (5.29)

the two symbols are equivalent. For a more general problem, we might replace
(+S) by a general starting state ¢ and (0 R) by a general finishing state X, and we
would want to know the amplitude

(x|4|é)

A complete analysis of the apparatus 4 would have to give the amplitude (x | 4 | ¢)
for every possible pair of states ¢ and X—an infinite number of combinations!
How then can we give a concise description of the behavior of the apparatus 4?
We can do it in the following way. Imagine that the apparatus of (5.28) is modified

BB R e

This is really no modification at all since the wide-open T apparatuses don’t do
anything. But they do suggest how we can analyze the problem. There is a certain
set of amplitudes (i | -|-S) that the atoms from S will get into the i state of 7. Then
there is another set of amplitudes that an i state (with respect to T') entering A
will come out as a j state (with respect to 7). And finally there is an amplitude
that each j state will get through the last filter as a (0 R) state. For each possible
alternative path, there is an amplitude of the form

(OR[jXil1ALDE] +S),

and the total amplitude is the sum of the terms we can get with all possible combi-
nations of i and j. The amplitude we want is

DT OR| NG| AL DGE]+S). (5.31)

77

If (0 R) and (4 S) are replaced by general states X and ¢, we would have the same
kind of expression; so we have the general result

(x| Alg) = 3 x| DGTALDG] @) (5.32)
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Now notice that the right-hand side of Eq. (5.32) is really “simpler” than the
left-hand side. The apparatus A is completely described by the nine numbers
{j| 4| i) which tell the response of 4 with respect to the three base states of the
apparatus 7. Once we know these nine numbers, we can handle any two incoming
and outgoing states ¢ and x if we define each in terms of the three amplitudes for
going into, or from, each of the three base states. The result of an experiment is
predicted using Eq. (5.32).

This then is the machinery of quantum mechanics for a spin-one particle.
Every state is described by three numbers which are the amplitudes to be in each
of some selected set of base states. Every apparatus is described by nine numbers
which are the amplitudes to go from one base state to another in the apparatus.
From these numbers anything can be calculated.

The nine amplitudes which describe the apparatus are often written as a
square matrix—called the matrix (j| 4| i):

from
+ 0 -
to 4+ | (+14[+) (+]4]o) (+[4]-)
0 (0 ]4]+) (ol4]o) (0f4]-) (5:33)

= | (=14l+) (=l4]0) (=]4]-)

The mathematics of quantum mechanics is just an extension of this idea. We
will give you a simple illustration. Suppose we have an apparatus C that we wish to
analyze—that is, we want to calculate the various {j | C | #). For instance, we might
want to know what happens in an experiment like

B E e

But then we notice that Cis just built of two pieces of apparatus A and B in series—
the particles go through 4 and then through B—so we can write symbolically

{c} - {A} . {B} | 539

We can call the C apparatus the “product” of 4 and B. Suppose also that we
already know how to analyze the two parts; so we can get the matrices (with respect
to T) of A and B. Our problem is then solved. We can easily find

(xlCle)
for any input and output states. First we write that

(x| Ci¢y =2, (X|Blk)Xki|A]|®).
k
Do you see why? (Hint: Imagine putting a T apparatus between A and B.) Then
if we consider the special case in which ¢ and X are also base states (of T), say i
and j, we have

GlCliy= 2 (I Blkxk| Al (5.36)
k

This equation gives the matrix for the “product™ apparatus C in terms of the two
matrices of the apparatuses 4 and B. Mathematicians call the new matrix (j | C | i)
—formed from two matrices (j | B | i) and (j | 4 | i) according to the sum specified
in Eq. (5.36)—the “product” matrix BA of the two matrices B and 4. (Note
that the order is important, AB #¢ BA.) Thus, we can say that the matrix for a
succession of two pieces of apparatus is the matrix product of the matrices for the
two apparatuses (putting the first apparatus on the right in the product). Anyone
who knows matrix algebra then understands that we mean just Eq. (5.36).
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5-7 Transforming to a different base

We want to make one final point about the base states used in the calculations.
Suppose we have chosen to work with some particular base—say the S base—and
another fellow decides to do the same calculations with a different base—say the
T base. To keep things straight let’s call our base states the (iS) states, where
i = +,0, —. Similarly, we can call his base states (j7). How can we compare
our work with his? The final answers for the result of any measurement should
come out the same, but in the calculations the various amplitudes and matrices
used will be different. How are they related? For instance, if we both start with
the same ¢, we will describe it in terms of the three amplitudes (iS|¢) that ¢
goes into our base states in the S representation, whereas he will describe it by the
amplitudes (jT | ¢) that the state ¢ goes into the base states is his 7" representation.
How can we check that we are really both describing the same state ¢? We can do
it with the general rule Il in (5.27). Replacing X by any one of his states jT, we have

(T 1) = 22 (TSNS 9)- (5.37)

To relate the two representations, we need only give the nine complex numbers of
the matrix (jT | iS). This matrix can then be used to convert all of his equations
to our form. It tells us how to fransform from one set of base states to another.
(For this reason (jT'|iS) is sometimes called “the transformation matrix from
representation S to representation 7.” Big words!)

For the case of spin-one partitles for which we have only three base states
(for higher spins, there are more) the mathematical situation is analogous to what
we have seen in vector algebra. Every vector can be represented by giving three
numbers—the components along the axes x, y, and z. That is, every vector can
be resolved into three “base” vectors which are vectors along the three axes. But
suppose someone else chooses to use a different set of axes—x’, )’, and z’. He will
be using different numbers to represent any particular vector. His calculations will
look different, but the final results will be the same. We have considered this before
and know the rules for transforming vectors from one set of axes to another.

You may want to see how the quantum mechanical transformations work by
trying some out; so we will give here, without proof, the transformation matrices
for converting the spin-one amplitudes in one representation S to another repre-
sentation 7, for various special relative orientations of the S and T filters. (We
will show you in a later chapter how to derive these same results.)

First case: The T apparatus has the same y-axis (along which the particles
move) as the S apparatus, but is rotated about the common y-axis by the angle
« (as in Fig. 5-6). (To be specific, a set of coordinates x’, y/, 2’ is fixed in the T
apparatus, related to the x, y, z coordinates of the S apparatus by: z/ = zcos o +
xsina,x’ = xcosa — zsina,y = y.) Then the transformation amplitudes are:

(+T|+S) = (1 + cos ),

(0T | +58) = —%Sina,

(=T|+S) = 3(1 — cos a),

(+T]0S) = +~1—£sma,
(0T} 0S) = cosa, (5.38)
(=T|0S) = — L sin «,

V2

(+T| —S) = (1 — cos a),
(0T | —8) = +é sin a,

(=T| -S)= 2(1 4 cos a).
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Second Case: The T apparatus has the same z-axis as S, but is rotated around
the z-axis by the angle 8. (The coordinate transformation is 2/ = 2, x' =
xcosB + ysinB, y' = ycosB — xsinB.) Then the transformation amplitudes
are:

(+T1+S8) = ™%,

(0T 0S) =1,
(=T|=5) = ™™, ©-39)
all others = 0.

Note that any rotations of T whatever can be made up of the two rotations
described.
If a state ¢ is defined by the three numbers

and the same state is described from the point of view of T by the three numbers
Ci=(+Ti¢), Co=(0T[¢), CL=(-T|¢) (5.41)

then the coefficients (jT | iS) of (5.38) or (5.39) give the transformation connect-
ing C; and C;. In other words, the C; are very much like the components of a
vector that appear different from the point of view of S and T.

For a spin-one particle only—because it requires three amplitudes—the cor-
respondence with a vector is very close. In each case, there are three numbers that
must transform with coordinate changes in a certain definite way. In fact, there
is a set of base states which transform just like the three components of a vector.
The three combinations

1 i
C,= — —(Cy — C), C,=——((C,.+C), C,=0C, (54
\/5(+ ) v \/§(+ ) 0 (5.42)

transform to C;, C;, and C; just the way that x, y, z transform to x’, ', z’. [You
can check that this is so by using the transformation laws (5.38) and (5.39).]
Now you see why a spin-one particle is often called a “vector particle.”

5-8 Other situations

We began by pointing out that our discussion of spin-one particles would be
a prototype for any quantum mechanical problem. The generalization has only
to do with the numbers of states. Instead of only three base states, any particular
situation may involve » base states.} Our basic laws in Eq. (5.27) have exactly
the same form—with the understanding that / and j must range over all n base
states. Any phenomenon can be analyzed by giving the amplitudes that it starts
in each one of the base states and ends in any other one of the base states, and then
summing over the complete set of base states. Any proper set of base states can
be used, and if someone wishes to use a different set, it is just as good; the two can
be connected by using an »n by s transformation matrix. We will have more to
say later about such transformations.

Finally, we promised to remark on what to do if atoms come directly from a
furnace, go through some apparatus, say 4, and are then analyzed by a filter which
selects the state X. You do not know what the state ¢ is that they start out in. It
is perhaps best if you don’t worry about this problem just yet, but instead concen-
trate on problems that always start out with pure states. But if you insist, here is
how the problem can be handled.

First, you have to be able to make some reasonable guess about the way the
states are distributed in the atoms that come from the furnace. For example, if

t The number of base states n may be, and generally is, infinite.
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there were nothing “special” about the furnace, you might reasonably guess
that atoms would leave the furnace with random “orientations.” Quantum me-
chanically, that corresponds to saying that you don’t know anything about the
states, but that one-third are in the (+.S) state, one-third are in the (0 S) state,
and one-third are in the (—S) state. For those that are in the (4-S) state the
amplitude to get through is (x| A | +S) and the probability is [(x | 4 | +3)|?,
and similarly for the others. The overall probability is then

HONATHS + Sx [ 41057 + 3| 4] =S)I*

Why did we use S rather than, say, T7? The answer is, surprisingly, the same no
matter what we choose for our initial resolution—so long as we are dealing with
completely random orientations. It comes about in the same way that

2 xlas) = 2 [ 1P

for any x. (We leave it for you to prove.)

Note that it is not correct to say that the input state has the amplitudes V1/3
to be in (+5), v/1/3 to be in (0 S), and v/1/3 to be in (— S); that would imply that
certain interferences might be possible. It is simply that you do not know what
the initial state is; you have to think in terms of the probability that the system
starts out in the various possible initial states, and then you have to take a weighted
average over the various possibilities.



6

Spin One-Halft

6-1 Transforming amplitudes

In the last chapter, using a system of spin one as an example, we outlined
the general principles of quantum mechanics:

Any state y can be described in terms of a set of base states by giving
the amplitudes to be in each of the base states.

The amplitude to go from any state to another can, in general, be written
as a sum of products, each product being the amplitude to go into one
of the base states times the amplitude to go from that base state to the
final condition, with the sum including a term for each base state:

(lyy = 25 ([ ixi|9). ©.1)

The base states are orthogonal—the amplitude to be in one if you are
in the other is zero:

@1J)y = b (62)

The amplitude to get from one state to another directly is the complex
conjugate of the reverse:

X[ = Wix). (6.3)

We also discussed a little bit about the fact that there can be more than one
base for the states and that we can use Eq. (6.1) to convert from one base to
another. Suppose, for example, that we have the amplitudes (iS | ¢) to find the
state y in every one of the base states i of a base system S, but that we then decide
that we would prefer to describe the state in terms of another set of base states,
say the states j belonging to the base 7. In the general formula, Eq. (6.1), we
could substitute ;T for X and obtain this formula:

(1) = 2 (T 1iS)S| ). 64)

The amplitudes for the state () to be in the base states (iT) are related to the
amplitudes to be in the base states (iS) by the set of coefficients (jT | iS). If there
are N base states, there are N2 such coefficients. Such a set of coefficients is often
called the “transformation matrix to go from the S-representation to the T-represen-
tation.”” This looks rather formidable mathematically, but with a little renaming
we can see that it is really not so bad. If we call C; the amplitude that the state ¥
is in the base state iS—that is, C; = (iS|¢)—and call C; the corresponding
amplitudes for the base system T—that is, C; = (jT | ), then Eq. (6.4) can be
written as

C; = > R;iCy, (6.5)
where R;; means the same thing as (jT | iS). Each amplitude C; is equal to a sum

t This chapter is a rather long and abstract side tour, and it does not introduce any
idea which we will not also come to by a different route in later chapters. You can,
therefore, skip over it, and come back later if you are interested.
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over all i of one of the coefficients R;; times each amplitude C;. It has the same
form as the transformation of a vector from one coordinate system to another.

In order to avoid being too abstract for too long, we have given you some
examples of these coefficients for the spin-one case, so you can see how to use
them in practice. On the other hand, there is a very beautiful thing in quantum
mechanics—that from the sheer fact that there are three states and from the
symmetry properties of space under rotations, these coefficients can be found
purely by abstract reasoning. Showing you such arguments at this early stage has
a disadvantage in that you are immersed in another set of abstractions before we
get “down to earth.” However, the thing is so beautiful that we are going to do
it anyway.

We will show you in this chapter how the transformation coefficients can be
derived for spin one-half particles. We pick this case, rather than spin one, because
it is somewhat easier. Our problem is to determine the coefficients R;; for a
particle—an atomic system—which is split into two beams in a Stern-Gerlach
apparatus. We are going to derive all the coefficients for the transformation from
one representation to another by pure reasoning—plus a few assumptions. Some
assumptions are always necessary in order to use “pure” reasoning! Although
the arguments will be abstract and somewhat involved, the result we get will be
relatively simple to state and easy to understand—and the result is the most
important thing. You may, if you wish, consider this as a sort of cultural excursion.
We have, in fact, arranged that all the essential results derived here are also
derived in some other way when they are needed in later chapters. So you need
have no fear of losing the thread of our study of quantum mechanics if you omit
this chapter entirely, or study it at some later time. The excursion is “cultural”
in the sense that it is intended to show that the principles of quantum mechanics
are not only interesting, but are so deep that by adding only a few extra hypotheses
about the structure of space, we can deduce a great many properties of physical
systems. Also, it is important that we know where the different consequences of
quantum mechanics come from, because so long as our laws of physics are in-
complete—as we know they are—it is interesting to find out whether the places
where our theories fail to agree with experiment is where our logic is the best or
where our logic is the worst. Until now, it appears that where our logic is the most
abstract it always gives correct results—it agrees with experiment. Only when we
try to make specific models of the internal machinery of the fundamental particles
and their interactions are we unable to find a theory that agrees with experiment.
The theory then that we are about to describe agrees with experiment wherever
it has been tested—for the strange particles as well as for electrons, protons,
and so on.

One remark on an annoying, but interesting, point before we proceed: It is
not possible to determine the coefficients R;; uniquely, because there is always
some arbitrariness in the probability amplitudes. If you have a set of amplitudes
of any kind, say the amplitudes to arrive at some place by a whole lot of different
routes, and if you multiply every single amplitude by the same phase factor—
say by e®—you have another set that is just as good. So, it is always possible to
make an arbitrary change in phase of all the amplitudes in any given problem if
you want to.

Suppose you calculate some probability by writing a sum of several amplitudes,
say (4 + B 4 C + ---) and taking the absolute square. Then somebody else
calculates the same thing by using the sum of the amplitudes (4’ + B’ + C’ +
-+ +) and taking the absolute square. If all the 4’, B’, C’, etc., are equal to the
A, B, C, etc., except for a factor e, all probabilities obtained by taking the absolute
squares will be exactly the same, since (4’ + B’ + C’ + ---) is then equal to
e®(d + B+ C+ ). Or suppose, for instance, that we were computing
something with Eq. (6.1), but then we suddenly change all of the phases of a
certain base system. Every one of the amplitudes (i | ¢) would be multiplied by
the same factor e®. Similarly, the amplitudes (i | X) would also be changed by
e, but the amplitudes (X | /) are the complex conjugates of the amplitudes (i [ x);
therefore, the former gets changed by the factor e~®. The plus and minus i’
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in the exponents cancel out, and we would have the same expression we had
before. So it is a general rule that if we change all the amplitudes with respect
to a given base system by the same phase—or even if we just change a// the ampli-
tudes in any problem by the same phase—it makes no difference. There is, there-
fore, some freedom to choose the phases in our transformation matrix. Every now
and then we will make such an arbitrary choice—usually following the conventions
that are in general use.

6-2 Transforming to a rotated coordinate system

We consider again the “improved” Stern-Gerlach apparatus described in the
last chapter. A beam of spin one-half particles, entering at the left, would, in
general, be split into two beams, as shown schematically in Fig. 6-1. (There
were three beams for spin one.) As before, the beams are put back together again
unless one or the other of them is blocked off by a ‘“‘stop” which intercepts the
beam at its half-way point. In the figure we show an arrow which points in the
direction of the increase of the magnitude of the field—say toward the magnet pole
with the sharp edges. This arrow we take to represent the “up” axis of any particular
apparatus. Tt is fixed relative to the apparatus and will allow us to indicate the
relative orientations when we use several apparatuses together. We also assume
that the direction of the magnetic field in each magnet is always the same with
respect to the arrow.

We will say that those atoms which go in the ‘“upper” beam are in the (+)
state with respect to that apparatus and that those in the “lower” beam are in the
(—) state. (There is no “zero” state for spin one-half particles.)

Now suppose we put two of our modified Stern-Gerlach apparatuses in
sequence, as shown in Fig. 6-2(a). The first one, which we call S, can be used to
prepare a pure (4.S) or a pure (—S) state by blocking one beam or the other.
[As shown it prepares a pure (+S) state.] For each condition, there is some
amplitude for a particle that comes out of S to be in either the (7)) or the (—T)
beam of the second apparatus. There are, in fact, just four amplitudes: the ampli-
tude to go from (4S) to (47), from (4S) to (—T7), from (—S) to (+7), from
(—S) to (—T). These amplitudes are just the four coefficients of the transformation
matrix Rj; to go from the S-representation to the T-representation. We can con-
sider that the first apparatus “prepares” a particular state in one representation
and that the second apparatus “analyzes” that state in terms of the second repre-
sentation. The kind of question we want to answer, then, is this: If an atom has
been prepared in a given condition—say the (4 S) state—by blocking one of the
beams in the apparatus S, what is the chance that it will get through the second
apparatus T if this is set for, say, the (—T) state. The result will depend, of course,
on the angles between the two systems S and T.

We should explain why it is that we could have any hope of finding the co-
efficients R;; by deduction. You know that it is almost impossible to believe that
if a particle has its spin lined up in the +z-direction, that there is some chance of
finding the same particle with its spin pointing in the +x-direction—or in any
other direction at all. In fact, it is almost impossible, but not quite. 1t is so nearly
impossible that there is only one way it can be done, and that is the reason we can
find out what that unique way is.

The first kind of argument we can make is this. Suppose we have a setup like
the one in Fig. 6-2(a), in which we have the two apparatuses S and 7, with T
cocked at the angle o with respect to S, and we let only the (<) beam through $
and the (—) beam through 7. We would observe a certain number for the
probability that the particles coming out of S get through 7. Now suppose we
make another measurement with the apparatus of Fig. 6-2(b). The relutive
orientation of S and T is the same, but the whole system sits at a different angle in
space. We want to assume that both of these experiments give the same number
for the chance that a particle in a pure state with respect to S will get into some
particular state with respect to 7. We are assuming, in other words, that the result
of any experiment of this type is the same—that the physics is the same—no matter
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Fig. 6-3. If Tis “wide open,” (b) is equivalent to (a).

how the whole apparatus is oriented in space. (You say, “That’s obvious.” But
it is an assumption, and it is “right” only if it is actually what happens.) That
means that the coefficients R;; depend only on the relation in space of S and 7,
and not on the absolute situation of S and 7. To say this in another way, R;;
depends only on the rotation which carries S to 7, for evidently what is the same in
Fig. 6-2(a) and Fig. 6-2(b) is the three-dimensional rotation which would carry
apparatus S into the orientation of apparatus 7. When the transformation matrix
R;; depends only on a rotation, as it does here, it is called a roration matrix.

For our next step we will need one more piece of information. Suppose we
add a third apparatus which we can call U, which follows T at some arbitrary
angle, as in Fig. 6-3(a). (It’s beginning to look horrible, but that’s the fun of
abstract thinking—you can make the most weird experiments just by drawing
lines!) Now what is the S — T — U transformation? What we really want to
ask for is the amplitude to go from some state with respect to S to some other
state with respect to U, when we know the transformation from S to 7 and from T
to U. We are then asking about an experiment in which both channels of T are
open. We can get the answer by applying Eq. (6.5) twice in succession. For
going from the S-representation to the T-representation, we have

C; =3 RiPC, (6.6)

where we put the superscripts 7'S on the R, so that we can distinguish it from the
coefficients RY” we will have for going from T to U.

Assuming the amplitudes to be in the base states of the U-representation
Cy/, we can relate them to the T-amplitudes by using Eq. (6.5) once more; we get

Ci =Y RLCh 6.7)
J

Now we can combine Egs. (6.6) and (6.7) to get the transformation to U directly
from S. Substituting C/ from Eq. (6.6) in Eq. (6.7), we have

cy =3 RUTS RISc, (6.8)
7 7
7 [

Or, since i does not appear in Rj,", we can put the j-summation also in front, and

write
Ct =2 Y RRFC, (6.9)
T i)

This is the formula for a double transformation.

Notice, however, that so long as all the beams in T are unblocked, the state
coming out of T is the same as the one that went in. We could just as well have
made a transformation from the S-representation directly to the U-representa-
tion. It should be the same as putting the U apparatus right after S, as in Fig.
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6-3(b). In that case, we would have written

cr =3 RSCy (6.10)

with the coefficients RYS belonging to this transformation. Now, clearly, Egs.
(6.9) and (6.10) should give the same amplitudes C;’, and this should be true no
matter what the original state ¢ was which gave us the amplitudes C;. So it must
be that
RYP = > RUFRFS. (6.11)
i

In other words, for any rotation S — U of a reference base, which is viewed as a
compounding of two successive rotations S — T and T — U, the rotation matrix
RS can be obtained from the matrices of the two partial rotations by Eq. (6.11).
If you wish, you can find Eq. (6.11) directly from Eq. (6.1), for it is only a different
notation for (kU | iS) = >; kU | jT){T | iS).

To be thorough, we should add the following parenthetical remarks. They are not
terribly important, however, so you can skip to the next section if you want. What we
have said is not quite right. We cannot really say that Eq. (6.9) and Eq. (6.10) must
give exactly the same amplitudes. Only the physics should be the same; all the amplitudes
could be different by some common phase factor like e without changing the result of
any calculation about the real world. So, instead of Eq. (6.11), all we can say, really, is
that

e RYS = D RYFRES, (6.12)
7

where § is some real constant. What this extra factor of €% means, of course, is that the
amplitudes we get if we use the matrix RUS might all differ by the same phase (e~%) from
the amplitude we would get using the two rotations RUT and RTS. We know that it doesn’t
matter if all amplitudes are changed by the same phase, so we could just ignore this phase
factor if we wanted to. It turns out, however, that if we define all of our rotation matrices
in a particular way, this extra phase factor will never appear—the é in Eq. (6.12) will
always be zero. Although it is not important for the rest of our arguments, we can give a
quick proof by using a mathematical theorem about determinants. [If you don’t yet know
much about determinants, don’t worry about the proof and just skip to the definition of
Eq. (6.15).]

First, we should say that Eq. (6.11) is the mathematical definition of a “product”
of two matrices. (It is just convenient to be able to say: “RUS is the product of RV and
RT5.”) Second, there is a theorem of mathematics—which you can easily prove for the
two-by-two matrices we have here—which says that the determinant of a “product™ of
two matrices is the product of their determinants. Applying this theorem to Eq. (6.12),
we get

e'2% (Det RUS) = (Det RUT) - (Det RTS). 6.13)

(We leave off the subscripts, because they don’t tell us anything useful.) Yes, the 2§ is
right. Remember that we are dealing with two-by-two matrices; every term in the matrix
RV is multiplied by e, so each product in the determinant—which has rwo factors—gets
multiplied by e?2%. Now let’s take the square root of Eq. (6.13) and divide it into Eq.
(6.12); we get
RYS Z RYT RIS
v/Det RS 5~ \/Det RVT V/Det RTS

The extra phase factor has disappeared.

Now it turns out that if we want all of our amplitudes in any given representation
to be normalized (which means, you remember, that _; (¢|i){ilp) = 1), the rotation
matrices will all have determinants that are pure imaginary exponentials, like . (We
won’t prove it; you will see that it always comes out that way.) So we can, if we wish,
choose to make all our rotation matrices R have a unique phase by making Det R = 1.
It is done like this. Suppose we find a rotation matrix R in some arbitrary way. We make
it a rule to “convert” it to “standard form” by defining

R

Ratandarda = \/D ‘R ‘ (6.15)
€

6.14)
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We can do this because we are just multiplying each term of R by the same phase factor,
to get the phases we want. In what follows, we will always assume that our matrices have
been put in the “standard form”; then we can use Eq. (6.11) without having any extra
phase factors.

6-3 Rotations about the z-axis

We are now ready to find the transformation matrix R;; between two different
representations. With our rule for compounding rotations and our assumption
that space has no preferred direction, we have the keys we need for finding the
matrix of any arbitrary rotation. There is only one solution. We begin with the
transformation which corresponds to a rotation about the z-axis. Suppose we
have two apparatuses S and T placed in series along a straight line with their axes
parallel and pointing out of the page, as shown in Fig. 6-4(a). We take our “z-axis”
in this direction. Surely, if the beam goes “up” (toward +z) in the S apparatus,
it will do the same in the T apparatus. Similarly, if it goes down in S, it will go
down in T. Suppose, however, that the T apparatus were placed at some other
angle, but still with its axis parallel to the axis of S, as in Fig. 6-4(b). Intuitively,
you would say that a (+) beam in S would still go with a (4) beam in 7, because
the fields and field gradients are still in the same physical direction. And that
would be quite right. Also, a (—) beam in S would still go into a (—) beam in 7.
The same result would apply for any orientation of T in the xy-plane of S. What
does this tell us about the relation between C'y = (+T|y), C. = (—T|y) and
Cy = (+S|¢¥). C_ = (=S| ¢)? You might conclude that any rotation about
the z-axis of the “frame of reference” for base states leaves the amplitudes C, to
be “up™ and “down,” the same as before. We could write C/, = C,and C.. = C_
—but that is wrong. All we can conclude is that for such rotations the probabilities
to be in the “up” beam are the same for the S and T apparatuses. That is,

CH = €4 and  |CL| = |C_.

We cannot say that the phases of the amplitudes referred to the T apparatus may
not be different for the two different orientations in (a) and (b) of Fig. 6-4.

(b) I~

3
| I
o
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FIELD GRADIENT x | ; 1
7/

Fig. 6—-4. Rotating 90° about the z-axis.

The two apparatuses in (a) and (b) of Fig. 6~4 are, in fact, different, as we
can see in the following way. Suppose that we put an apparatus in front of S which
produces a pure (+x) state. (The x-axis points toward the bottom of the figure.)
Such particles would be split into (+z) and (—z) beams in S, but the two beams
would be recombined to give a (+x) state again at P;—the exit of S. The same
thing happens again in 7. If we follow T by a third apparatus U, whose axis is in
the (4-x) direction and, as shown in Fig. 6-5(a), all the particles would go into
the (+) beam of U. Now imagine what happens if T and U are swung around
together by 90° to the positions shown in Fig. 6-5(b). Again, the T apparatus
puts out just what it takes in, so the particles that enter U are in a (4 x) state with
respect to S. But U now analyzes for the (- ) state with respect to S, which is
different. (By symmetry, we would now expect only one-half of the particles to
get through.)
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Fig. 6-5. Particle in a (4 x) state behaves differently in (a) and (b).

What could have changed? The apparatuses 7 and U are still in the same
physical relationship to each other. Can the physics be changed just because T
and U are in a different orientation? Our original assumption is that it should not.
It must be that the amplitudes with respect to T are different in the two cases shown
in Fig. 6-5—and, therefore, also in Fig. 6-4. There must be some way fora
particle to know that it has turned the corner at P;. How could it tell? Well, all
we have decided is that the magnitudes of C; and Cj, are the same in the two cases,
but they could—in fact, must—have different phases. We conclude that C/, and
C, must be related by

C, = e™Cy,

and that C”_ and C_ must be related by
C. = e™C_,

where N\ and u are real numbers which must be related in some way to the angle
between S and 7.

The only thing we can say at the moment about A and u is that they must not
be equal [except for the special case shown in Fig. 6-5(a), when T is in the same
orientation as S]. We have seen that equal phase changes in all amplitudes have
no physical consequence. For the same reason, we can always add the same
arbitrary amount to both X\ and u without changing anything. So we are permitted
to choose to make N and u equal to plus and minus the same number. That is, we
can always take

A
VRIS 3" NERPRI S 22}

Then

So we adopt the convention} that u = —\. We have then the general rule that
for a rotation of the reference apparatus by some angle about the z-axis, the trans-
formation is

Cy =etC,, C.=e"C_ (6.16)

The absolute values are the same, only the phases are different. These phase factors
are responsible for the different results in the two experiments of Fig. 6-5.

Now we would like to know the law that relates \ to the angle between S
and 7. We already know the answer for one case. If the angle is zero, X is zero.
Now we will assume that the phase shift X is a continuous function of angle ¢
between S and T (see Fig. 6-4) as ¢ goes to zero—as only seems reasonable. In

t Looking at it another way, we are just putting the transformation in the *“standard
form™ described in Section 6-2 by using Eq. (6.15).
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ther words, if we rotate T from the straight line through S by the small angle ¢, the
\ is also a small quantity, say me, where m is some number. We write it this way
because we can show that A must be proportional to €. Suppose we were to put
after 7" another apparatus 7”7 which makes the angle € with 7, and, therefore, the
angle 2e with S. Then, with respect to T, we have

C, = e™Cy,
and with respect to 77, we have
o= eCly = ey

But we know that we should get the same result if we put 7’ right after S. Thus,
when the angle is doubled, the phase is doubled. We can evidently extend the
argument and build up any rotation at all by a sequence of infinitesimal rotations.
We conclude that for any angle ¢, N is proportional to the angle. We can, therefore,
write N\ = mg.

The general result we get, then, is that for T rotated about the z-axis by the
angle ¢ with respect to S

C, = e™C,, C_=e¢"C 6.17)

For the angle ¢, and for all rotations we speak of in the future, we adopt the stand-
ard convention that a positive rotation is a right-handed rotation about the positive
direction of the reference axis. A positive ¢ has the sense of rotation of a right-
handed screw advancing in the positive z-direction.

Now we have to find what m must be. First, we might try this argument:
Suppose T is rotated by 360°; then, clearly, it is right back at zero degrees, and we
should have C). = C, and C_ = C_, or, what is the same thing, e™?" = 1.
We get m = 1. This argument is wrong! To see that it is, consider that T is rotated
by 180°. If m were equal to 1, we would have C/, = ¢"C, = —C, and C_ =
e~"C_ = —C_. However, this is just the original state all over again. Both
amplitudes are just multiplied by — 1 which gives back the original physical system.
(Itis again a case of a common phase change.) This means that if the angle between
T and S in Fig. 6-5(b) is increased to 180°, the system (with respect to T') would be
indistinguishable from the zero-degree situation, and the particles would again
go through the (+) state of the U apparatus. At 180°, though, the (4) state of
the U apparatus is the (—x) state of the original S apparatus. So a (+x) state
would become a (—x) state. But we have done nothing to change the original
state; the answer is wrong. We cannot have m = 1.

We must have the situation that a rotation by 360° and no smaller angle
reproduces the same physical state. This will happen if m = 3. Then, and only
then, will the first angle that reproduces the same physical state be ¢ = 360°.F
It gives

cy

—-Cy
360° about z-axis. (6.18)
C. = —C_

It is very curious to say that if you turn the apparatus 360° you get new amplitudes.
They aren’t really new, though, because the common change of sign doesn’t give
any different physics. If someone else had decided to change all the signs of the
amplitudes because he thought he had turned 360°, that’s all right; he gets the
same physics.} So our final answer is that if we know the amplitudes C and C_ for
spin one-half particles with respect to a reference frame S, and we then use a base

1 It appears that m = —% would also work. However, we see in (6.17) that the change
in sign merely redefines the notation for a spin-up particle.

1 Also, if something has been rotated by a sequence of small rotations whose net re-
sult is to return it to the original orientation, it is possible to define the idea that it has
been rotated 360°—as distinct from zero net rotation—if you have kept track of the
whole history. (Interestingly enough, this is nof true for a net rotation of 720°.)
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system referred to T which is obtained from S by a rotation of ¢ around the z-axis,
the new amplitudes are given in terms of the old by

c, = e®%c,
¢ about z. (6.19)
CL = e ®C_

6-4 Rotations of 180° and 90° about y

Next, we will try to guess the transformation for a rotation of T with respect
to S of 180° around an axis perpendicular to the z-axis—say, about the y-axis.
(We have defined the coordinate axes in Fig. 6-1.) In other words, we start with
two identical Stern-Gerlach equipments, with the second one, T, turned ‘“‘upside
down” with respect to the first one, S, as in Fig. 6-6. Now if we think of our par-
ticles as little magnetic dipoles, a particle that is the (4 S) state—so that it goes on
the “upper” path in the first apparatus—will also take the “upper” path in the
second, so that it will be in the minus state with respect to 7. (In the inverted
T apparatus, both the gradients and the field direction are reversed; for a particle
with its magnetic moment in a given direction, the force is unchanged.) Anyway,
what is “up” with respect to S will be “down”” with respect to 7. For these relative
positions of S and T, then, we know that the transformation must give

ICyl = |C|, |CL| = [C4l.

As before, we cannot rule out some additional phase factors; we could have (for
180° about the y-axis)

¢, =ePCc_ and C. = eC,, (6.20)

where 3 and 7 are still to be determined.

What about a rotation of 360° about the y-axis? Well, we already know the
answer for a rotation of 360° about the z-axis—the amplitude to be in any state
changes sign. A rotation of 360° around any axis always brings us back to the
original position. It must be that for any 360° rotation, the result is the same as
a 360° rotation about the z-axis—all amplitudes simply change sign. Now suppose
we imagine two successive rotations of 180° about y—using Eq. (6.20)—we should
get the result of Eq. (6.18). In other words,

CY = ePCL = ePe"Cy = —C

and 6.21)
C!’ = e"Cl = eVe®C_ = —C_.

This means that
e = —1 or e" = —e ¥

So the transformation for a rotation of 180° about the y-axis can be written
CL = e*c_, C_ = —e’iBC+. (6.22)

The arguments we have just used would apply equally well to a rotation of 180°
about any axis in the xy-plane, although different axes can, of course, give different
numbers for 8. However, that is the only way they can differ. Now there is a cer-
tain amount of arbitrariness in the number 3, but once it is specified for one axis
of rotation in the xy-plane it is determined for any other axis. It is conventional
to choose to set 3 = 0 for a 180° rotation about the y-axis.

To show that we have this choice, suppose we imagine that 3 was not equal
to zero for a rotation about the y-axis; then we can show that there is some other
axis in the xy-plane, for which the corresponding phase factor will be zero. Let’s
find the phase factor 84 for an axis 4 that makes the angle o with the y-axis, as
shown in Fig. 6-7(a). (For clarity, the figure is drawn with « equal to a negative
number, but that doesn’t matter.) Now if we take a T apparatus which is initially
lined up with the S apparatus and is then rotated 180° about the axis 4, its axes—
which we will call x”, y”/, and z’’—will be as shown in Fig 6-7(a). The amplitudes

69

Fig. 6-6. A rotation of 180° about
the y-axis.
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Fig. 6-7. A 180° rotation about the
axis A is equivalent to a rotation of 180°
about y, followed by a rotation about z'.

with respect to T will then be

cy=ePic., L= —ePiC,. (6.23)

We can now think of getting to the same orientation by the two successive
rotations shown in (b) and (c) of the figure. First, we imagine an apparatus U
which is rotated with respect to S by 180° about the y-axis. The axes x’, y’, and 2’
of U will be as shown in Fig. 6-7(b), and the amplitudes with respect to U are
given by (6.22).

Now notice that we can go from U to T by a rotation about the “z-axis”
of U, namely about z’, as shown in Fig. 6-7(c). From the figure you can see that

the angle required is two times the angle o but in the opposite direction (with

respect to z’). Using the transformation of (6.19) with ¢ = —2a, we get
cyo=eC,, C!l=eTCL. (6.24)
Combining Egs. (6.24) and (6.22), we get that
L =e¥oc., = -0, (6.25)

These amplitudes must, of course, be the same as we got in 6.23). So B4 must
be related to « and 8 by

Ba=pB— a (6.26)
This means that if the angle « between the A-axis and the y-axis (of S) is equal to
B, the transformation for a rotation of 180° about 4 will have g4 = 0.

Now so long as some axis perpendicular to the z-axis is going to have 8 = 0,
we may as well take it to be the y-axis. It is purely a matter of convention, and we
adopt the one in general use. Our result: For a rotation of 180° about the y-axis,
we have

c,=C. }
180° about y. 6.27)
CcL

[

-Cy

While we are thinking about the y-axis, let’s next ask for the transformation
matrix for a rotation of 90° about y. We can find it because we know that two
successive 90° rotations about the same axis must equal one 180° rotation. We
start by writing the transformation for 90° in the most general form:

C, = aCy + bC_, CL = cCy + dC_. (6.28)

A second rotation of 90° about the same axis would have the same coefficients:

Cl = aCl + bCL, C" = cC + dC_. (6.29)
Combining Egs. (6.28) and (6.29), we have
CY = a(aCy + bC_) + b(cCy + dC_),
(6.30)
C"” = c(aCy + bC_) + d(cCy + dC_).
However, from (6.27) we know that
Ccl=C_, c’ = —Cy,,
so that we must have that
ab + bd = 1,
a? + be = 0, 6.31)
ac + cd = —1,
bc + d? = 0.

These four equations are enough to determine all our unknowns: 4, b, ¢, and d.
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It is not hard to do. Look at the second and fourth equations. Deduce that
a? = d2, which means that a = d or else that a = —d. Buta = —d is out,
because then the first equation wouldn’t be right. So d = a. Using this, we have
immediately that » = 1/2a and that ¢ = —1/2a. Now we have everything in
terms of a. Putting, say, the second equation all in terms of a, we have

a —-—=20 or a’ = -

This equation has four different solutions, but only two of them give the standard
value for the determinant. We might as well take a = 1/4/2; thent

1/v2,
1/V2.

In other words, for two apparatuses S and 7, with T rotated with respect to
S by 90° about the y-axis, the transformation is

a=1/4/2, b
c=—1/2, d

i

1

CL = — (Cp+ C_
¥ \/Q( + )
90° about y. (6.32)
1
.= — (—-Cy+ C_
V2 (=C+ )

We can, of course, solve these equations for C and C_, which will give us
the transformation for a rotation of minus 90° about y. Changing the primes
around, we would conclude that

(Cy—C)

Sl

—90° about y. (6.33)

1

= — (C. + C_
V/i( + )

(o

6-5 Rotations about x

You may be thinking: “This is getting ridiculous. What are they going to
do next, 47° around y, then 33° about x, and so on, forever?” No, we are almost
finished. With just two of the transformations we have—90° about y, and an arbi-
trary angle about z (which we did first if you remember)—we can generate any
rotation at all.

As an illustration, suppose that we want the angle « around x. We know how
to deal with the angle o around z, but now we want it around x. How do we get
it? First, we turn the axis z down onto x—which is a rotation of +90° about y,
as shown in Fig. 6-8. Then we turn through the angle o around z’. Then we
rotate —90° about y”’. The net result of the three rotations is the same as turning
around x by the angle «. It is a property of space.

(These facts of the combinations of rotations, and what they produce, are hard
to grasp intuitively. It is rather strange, because we live in three dimensions, but
it is hard for us to appreciate what happens if we turn this way and then that way.
Perhaps, if we were fish or birds and had a real appreciation of what happens when
we turn somersaults in space, we could more easily appreciate such things.)

Anyway, let’s work out the transformation for a rotation by « around the
x-axis by using what we know. From the first rotation by +90° around y the
amplitudes go according to Eq. (6.32). Calling the rotated axes x’, ', and z’, the

+ The other solution changes all signs of «, b, ¢, and d and corresponds to a —270°
rotation.
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next rotation by the angle « around z’ takes us to a frame x”, y”, z”’, for which
Cl = €™y,  Cr = eTC,
The last rotation of —90° about y” takes us to x'”’, y'”’, z’’’; by (6.33),

1

1
c o= (C" _ Cﬁ), Cc!" =
+ + - \/i

V2

Combining these last two transformations, we get

© + cn.

1
V2

1 . .
Ct = — (et™?CY 4 e~2CL),
V2

C{}/,, — (e+ia[2cq_ _ e—ia/ZCl_)’

Using Eqs. (6.32) for C/, and C’_, we get the complete transformation:
CY = Het™Cy + C) — e™(—Cy + CLY},
C = Het™HCy + C) + e7 ¥ —Cy + CL)}.
We can put these formulas in a simpler form by remembering that

e? 4+ e = 2cos9, and e* — ¢* = 2isin 6.

We get
cy = (cos %)c+ + i(sin g)c_
a about x. (6.34)
c = i(sin %)CJr + (cos %)C_

Here is our transformation for a rotation about the x-axis by any angle «. It is
only a little more complicated than the others.

6-6 Arbitrary rotations

Now we can see how to do any angle at all. First, notice that any relative
orientation of two coordinate frames can be described in terms of three angles, as
shown in Fig. 6-9. If we have a set of axes x’, )/, and 2’ oriented in any way at all
with respect to x, y, and z, we can describe the relationship between the two frames
by means of the three Euler angles a, 8, and v, which define three successive ro-
tations that will bring the x, y, z frame into the x’, y’, z’ frame. Starting at x, y, z,
we rotate our frame through the angle 8 about the z-axis, bringing the x-axis to
the line x,. Then, we rotate by « about this temporary x-axis, to bring z down to
Z’. Finally, a rotation about the new z-axis (that is, z’) by the angle ¥ will bring
the x-axis into x’ and the y-axis into y’.+ We know the transformations for each
of the three rotations—they are given in (6.19) and (6.34). Combining them in
the proper order, we get

C’. = cos % eBNIZC. 4 jsin % e~ E-M2C
o L (6.35)
CL = isin 5 e“P2C 4 cos 3 e~ BIVI2C_

So just starting from some assumptions about the properties of space, we have
derived the amplitude transformation for any rotation at all. That means that if

T With a little work you can show that the frame x, y, z can also be brought into the
frame x', y’, z’ by the following three rotations about the original axes: (1) rotate by the
angle ¥ around the original z-axis; (2) rotate by the angle « around the original x-axis;
(3) rotate by the angle 8 around the original z-axis.
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Fig. 6-9. The orientation of any Fig. 6-10. An axis A defined by
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another frame x, y, z can be defined in
terms of Euler's angles «, 8, 7.

we know the amplitudes for any state of a spin one-half particle to go into the two
beams of a Stern-Gerlach apparatus S, whose axes are x, y, and z, we can calculate
what fraction would go into either beam of an apparatus T with the axes x’, )/,
and z’. In other words, if we have a state ¢ of a spin one-half particle, whose
amplitudes are C, = (+ |¢) and C_ = (— |¢) to be “up” and “down” with
respect to the z-axis of the x, y, z frame, we also know the amplitudes C’; and CL
to be “up” and “down” with respect to the z’-axis of any other frame x’, ', z'.
The four coefficients in Eqs. (6.35) are the terms of the “transformation matrix”
with which we can project the amplitudes of a spin one-half particle into any
other coordinate system.

We will now work out a few examples to show you how it all works. Let’s
take the following simple question. We put a spin one-half atom through a Stern-
Gerlach apparatus that transmits only the (42) state. What is the amplitude that
it will be in the (4+x) state? The -+x axis is the same as the 42’ axis of a system
rotated 90° about the y-axis. For this problem, then, it is simplest to use Eqs.
(6.32)—although you could, of course, use the complete equations of (6.35).
Since C, = 1and C_ = 0, we get Cy = 1/4/2. The probabilities are the abso-
lute square of these amplitudes; there is a 50 percent chance that the particle will
go through an apparatus that selects the (+x) state. 1f we had asked about ?e
(—x) state the amplitude would have been —1/+/2, which also gives a probability
1/2—as you would expect from the symmetry of space. So if a particle is in the
(42) state, it is equally likely to be in (+x) or (—x), but with opposite phase.

There’s no prejudice in y either. A particle in the (4-z) state has a 50-50
chance of being in (+y) or in (—y). However, for these (using the formula for
rotating —90° about x), the amplitudes are 1/4/2 and —i/+/2. In this case, the
two amplitudes have a phase difference of 90° instead of 180°, as they did for the
(+x) and (—x). In fact, that’s how the distinction between x and y shows up.

As our final example, suppose that we know that a spin one-half particle is in
a state ¥ such that it is polarized “up” along some axis A4, defined by the angles
¢ and ¢ in Fig. 6-10. We want to know the amplitude (C. | ) that the particle
is “up” along z and the amplitude (C_ | y) that it is “down’ along z. We can find
these amplitudes by imagining that 4 is the z-axis of a system whose x-axis lies in
some arbitrary direction—say in the plane formed by 4 and z. We can then bring
the frame of A4 into x, y, z by three rotations. First, we make a rotation by — /2
about the axis 4, which brings the x-axis into the line B in the figure. Then we
rotate by 8 about line B (the new x-axis of frame A) to bring 4 to the z-axis. Finally,
we rotate by the angle (/2 — ¢) about x. Remembering that we have only a (+)
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state with respect to A, we get
c 6 a2 8 sl
4+ = COS i e N C_ = sin z e . (636)

We would like, finally, to summarize the results of this chapter in a form that
will be useful for our later work. First, we remind you that our primary result in
Egs. (6.35) can be written in another notation. Note that Eqs. (6.35) mean
just the same thing as Eq. (6.4). That is, in Egs. (6.35) the coefficients of C, =
(+S|¢)and C_ = (—S|y) are just the amplitudes (j7 | iS) of Eq. (6.4)—the
amplitudes that a particle in the i-state with respect to .S will be in the j-state with
respect to T (when the orientation of T with respect to S is given in terms of the
angles a, 8, and v). We also called them R};® in Eq. (6.6). (We have a plethora of
notations!) For example, Ris+ = (=T | +S) is the coefficient of C in the formula
for C’_, namely, i sin (a/2) e*®~"/2. We can, therefore, make a summary of our
results in the form of a table, as we have done in Table 6-1.

It will occasionally be handy to have these amplitudes already worked out
for some simple special cases. Let’s let R,(¢) stand for a rotation by the angle ¢
about the z-axis. We can also let it stand for the corresponding rotation matrix
(omitting the subscripts i and j, which are to be implicitly understood). In the
same spirit R,(¢) and R,(¢) will stand for rotations by the angle ¢ about the
x-axis or the y-axis. We give in Table 6-2 the matrices—the tables of amplitudes
(T | iS)—which project the amplitudes from the S-frame into the T-frame, where
T is obtained from S by the rotation specified.

Table 6-2

The amplitudes (jT | iS) for a rotation R(¢) by the angle ¢
about the z-axis, x-axis, or y-axis

Table 6-1 - R-(¢)
The amplitudes (jT | iS) for a rotation defined by the (JTlis) +S —-S
Euler angles «, 3, ¥ of Fig. 6-9 4T pié/2 0
Rji(ay ﬁ’ 7) o _T 0 e—i¢/2
(jTlis) +5 -5
R.(¢)
+T cos = eilB+m/2 isin % e—iB—v/2 " s
2 2 (JTViS) +S )
~T isin & ei6—y/2 cos & e—ilB+m/2 +7 cos ¢/2 isin¢/2
2
-T isin ¢/2 cos ¢/2
R,()
(jT)iS) +S -S
+T cos ¢/2 sin ¢/2
-T —sin¢/2 cos ¢/2
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The Dependence of Amplitudes on Time

7-1 Atoms at rest; stationary states

We want now to talk a little bit about the behavior of probability amplitudes
in time. We say a “little bit,” because the actual behavior in time necessarily
involves the behavior in space as well. Thus, we get immediately into the most
complicated possible situation if we are to do it correctly and in detail. We are
always in the difficulty that we can either treat something in a logically rigorous
but quite abstract way, or we can do something which is not at all rigorous but
which gives us some idea of a real situation—postponing until later a more careful
treatment. With regard to energy dependence, we are going to take the second
course. We will make a number of statements. We will not try to be rigorous—but
will just be telling you things that have been found out, to give you some feeling
for the behavior of amplitudes as a function of time. As we go along, the precision
of the description will increase, so don’t get nervous that we seem to be picking
things out of the air. It is, of course, all out of the air—the air of experiment and
of the imagination of people. But it would take us too long to go over the historical
development, so we have to plunge in somewhere. We could plunge into the ab-
stract and deduce everything—which you would not understand—or we could
go through a large number of experiments to justify each statement. We choose
to do something in between.

An electron alone in empty space can, under certain circumstances, have a
certain definite energy. For example, if it is standing still (so it has no translational
motion, no momentum, or kinetic energy), it has its rest energy. A more compli-
cated object like an atom can also have a definite energy when standing still, but
it could also be internally excited to another energy level. (We will describe later
the machinery of this.) We can often think of an atom in an excited state as having
a definite energy, but this is really only approximately true. An atom doesn’t
stay excited forever because it manages to discharge its energy by its interaction
with the electromagnetic field. So there is some amplitude that a new state is
generated—with the atom in a lower state, and the electromagnetic field in a higher
state, of excitation. The total energy of the system is the same before and after,
but the energy of the arom is reduced. So it is not precise to say an excited atom
has a definite energy; but it will often be convenient and not too wrong to say that
it does.

[Incidentally, why does it go one way instead of the other way? Why does an
atom radiate light? The answer has to do with entropy. When the energy is in the
electromagnetic field, there are so many different ways it can be—so many different
places where it can wander—that if we look for the equilibrium condition, we
find that in the most probable situation the field is excited with a photon, and the
atom is de-excited. It takes a very long time for the photon to come back and find
that it can knock the atom back up again. It’s quite analogous to the classical
problem: Why does an accelerating charge radiate? It isn’t that it “wants” to lose
energy, because, in fact, when it radiates, the energy of the world is the same as it
was before. Radiation or absorption goes in the direction of increasing entropy.]

Nuclei can also exist in different energy levels, and in an approximation which
disregards the electromagnetic effects, we can say that a nucleus in an excited state
stays there. Although we know that it doesn’t stay there forever, it is often useful
to start out with an approximation which is somewhat idealized and easier to
think about. Also it is often a legitimate approximation under certain circum-
stances. (When we first introduced the classical laws of a falling body, we did not
include friction, but there is almost never a case in which there isn’t some friction.)
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Then there are the subnuclear “strange particles,” which have various masses.
But the heavier ones disintegrate into other light particles, so again it is not correct
to say that they have a precisely definite energy. That would be true only if they
lasted forever. So when we make the approximation that they have a definite
energy, we are forgetting the fact that they must blow up. For the moment, then,
we will intentionally forget about such processes and learn later how to take them
into account.

Suppose we have an atom—or an electron, or any particle—which at rest
would have a definite energy E,. By the energy E, we mean the mass of the whole
thing times ¢2. This mass includes any internal energy; so an excited atom has a
mass which is different from the mass of the same atom in the ground state. (The
ground state means the state of lowest energy.) We will call E, the “energy at rest.”

For an atom at rest, the quantum mechanical amplitude to find an atom at a
place is the same everywhere; it does not depend on position. This means, of course,
that the probability of finding the atom anywhere is the same. But it means even
more. The probability could be independent of position, and still the phase of the
amplitude could vary from point to point. But for a particle at rest, the complete
amplitude is identical everywhere. It does, however, depend on the time. For a
particle in a state of definite energy E, the amplitude to find the particle at (x, y, z)
at the time 7 is

ae— Eotrt .10

where a is some constant. The amplitude to be at any point in space is the same
for all points, but depends on time according to (7.1). We shall simply assume
this rule to be true.

Of course, we could also write (7.1) as

ae~"t (12)
with
fiw = Ey = Mc?,

where M is the rest mass of the atomic state, or particle. There are three different
ways of specifying the energy: by the frequency of an amplitude, by the energy in
the classical sense, or by the inertia. They are all equivalent; they are just different
ways of saying the same thing.

You may be thinking that it is strange to think of a “particle” which has
equal amplitudes to be found throughout all space. After all, we usually imagine
a “particle” as a small object located “somewhere.” But don’t forget the uncer-
tainty principle. If a particle has a definite energy, it has also a definite momentum.
If the uncertainty in momentum is zero, the uncertainty relation, Ap Ax = #,
tells us that the uncertainty in the position must be infinite, and that is just what
we are saying when we say that there is the same amplitude to find the particle
at all points in space.

If the internal parts of an atom are in a different state with a different total
energy, then the variation of the amplitude with time is different. If you don’t
know in which state it is, there will be a certain amplitude to be in one state and a
certain amplitude to be in another—and each of these amplitudes will have a dif-
ferent frequency. There will be an interference between these different components
—like a beat-note—which can show up as a varying probability. Something will
be “going on” inside of the atom—even though it is “at rest” in the sense that its
center of mass is not drifting. However, if the atom has one definite energy, the
amplitude is given by (7.1), and the absolute square of this amplitude does not
depend on time. You see, then, that if a thing has a definite energy and if you ask
any probability question about it, the answer is independent of time. Although
the amplitudes vary with time, if the energy is definite they vary as an imaginary
exponential, and the absolute value doesn’t change.

That’s why we often say that an atom in a definite energy level is in a stationary
state. 1f you make any measurements of the things inside, you’ll find that nothing
(in probability) will change in time. In order to have the probabilities change.in
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time, we have to have the interference of two amplitudes at two different frequencies,
and that means that we cannot know what the energy is. The object will have one
amplitude to be in a state of one energy and another amplitude to be in a state of
another energy. That’s the quantum mechanical description of something when
its behavior depends on time.

If we have a “condition” which is a mixture of two different states with differ-
ent energies, then the amplitude for each of the two states varies with time according
to Eq. (7.2), for instance, as

THEUBE - gnd B, (73)

e
And if we have some combination of the two, we will have an interference. But
notice that if we added a constant to both energies, it wouldn’t make any difference.
If somebody else were to use a different scale of energy in which all the energies
were increased (or decreased) by a constant amount—say, by the amount 4—then
the amplitudes in the two states would, from his point of view, be

B g o i Bt ArtIn (1.4)
All of his amplitudes would be multiplied by the same factor e=*4/®! and all
linear combinations, or interferences, would have the same factor. When we take
the absolute squares to find the probabilities, all the answers would be the same.
The choice of an origin for our energy scale makes no difference; we can measure
energy from any zero we want. For relativistic purposes it is nice to measure the
energy so that the rest mass is included, but for many purposes that aren’t rela-
tivistic it is often nice to subtract some standard amount from all energies that
appear. For instance, in the case of an atom, it is usually convenient to subtract
the energy M,c2, where M, is the mass of all the separate pieces—the nucleus and
the electrons—which is, of course, different from the mass of the atom. For other
problems it may be useful to subtract from all energies the amount M,c?, where
M, is the mass of the whole atom in the ground state; then the energy that appears
is just the excitation energy of the atom. So, sometimes we may shift our zero of
energy by some very large constant, but it doesn’t make any difference, provided
we shift all the energies in a particular calculation by the same constant. So much
for a particle standing still.

7-2 Uniform motion

If we suppose that the relativity theory is right, a particle at rest in one inertial 4 == — — — — - _ %
system can be in uniform motion in another inertial system. In the rest frame of —_——— e T — — — — —
the particle, the probability amplitude is the same for all x, y, and z but varies with Y- - - — — S
t. The magnitude of the amplitude is the same for all ¢, but the phase depends on 7.
We can get a kind of a picture of the behavior of the amplitude if we plot lines of
equal phase—say, lines of zero phase—as a function of x and 7. For a particle at Fig. 7-1. Relativistic transformation
rest, these equal-phase lines are parallel to the x-axis and are equally spaced in of the amplitude of a particle at rest in
the t-coordinate, as shown by the dashed lines in Fig. 7-1. the x-t systems.

In a different frame—x’, 3/, z’, f—that is moving with respect to the particle
in, say, the x-direction, the x’ and ¢ coordinates of any particular point in space
are related to x and ¢ by the Lorentz transformation. This transformation can be
represented graphically by drawing x’ and ¢ axes, as is done in Fig. 7-1. (See
Chapter 17, Vol. I, Fig. 17-2.) You can see that in the x’-¢’ system, points of equal
phaset have a different spacing along the t-axis, so the frequency of the time
variation is different. Also there is a variation of the phase with x’, so the prob-
ability amplitude must be a function of x’.

+ We are assuming that the phase should have the same value at corresponding points
in the two systems. This is a subtle point, however, since the phase of a quantum me-
chanical amplitude is, to a large extent, arbitrary. A complete justification of this assump-
tion requires a more detailed discussion involving interferences of two or more amplitudes.
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Under a Lorentz transformation for the velocity », say along the negative
x-direction, the time ¢ is related to the time 7’ by

1 — x'v/c?
V91— v2/c? ’

so our amplitude now varies as

oI Eot e—(i/fi)(Eo V1= F—Eguz' |2V 1—v2/ %)

In the prime system it varies in space as well as in time. If we write the amplitude as
—(/A)Ept'—p'x")
e r s

we see that E, = Ey/r/1 — v2/c? is the energy computed classically for a
particle of rest energy E, travelling at the velocity », and p’ = Elv/c? is the
corresponding particle momentum.

You know that x, = (¢, x, y, z) and p, = (E, ps, py, P.) are four-vectors, and
that p,x, = Et — p- x is a scalar invariant. In the rest frame of the particle,
puX, is just Et; so if we transform to another frame, Et will be replaced by

Et — p/ - x.

Thus, the probability amplitude of a particle which has the momentum p will be
proportional to
e—(z‘/ﬁ)(Ept—p-x) , (1.5)

where E, is the energy of the particle whose momentum is p, that is,

E, = Y(po)® + E3, (7.6)
where E is, as before, the rest energy. For nonrelativistic problems, we can write
E, = Mc* + W, (1.7

where W, is the energy over and above the rest energy M,c? of the parts of the
atom. In general, W, would include both the kinetic energy of the atom as well
as its binding or excitation energy, which we can call the “internal” energy. We

would write
2

Wp = Wint + 2’;/‘4 ’ (7'8)

and the amplitudes would be

=MW pt—pn (7.9)

Because we will generally be doing nonrelativistic calculations, we will use this
form for the probability amplitudes.

Note that our relativistic transformation has given us the variation of the
amplitude of an atom which moves in space without any additional assumptions.
The wave number of the space variations is, from (7.9),

k=2, (7.10)

so the wavelength is
_r_h

e (7.11)

This is the same wavelength we have used before for particles with the momentum
p. This formula was first arrived at by de Broglie in just this way. For a moving
particle, the frequency of the amplitude variations is still given by

hw = W, (7.12)
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The absolute square of (7.9) is just 1, so for a particle in motion with a
definite energy, the probability of finding it is the same everywhere and does not
change with time. (It is important to notice that the amplitude is a complex wave.
If we used a real sine wave, the square would vary from point to point, which
would not be right.)

We know, of course, that there are situations in which particles move from
place to place so that the probability depends on position and changes with time.
How do we describe such situations? We can do that by considering amplitudes
which are a superposition of two or more amplitudes for states of definite energy.
We have already discussed this situation in Chapter 48 of Vol. I—even for prob-
ability amplitudes! We found that the sum of two amplitudes with different wave
numbers k (that is, momenta) and frequencies w (that is, energies) gives inter-
ference humps, or beats, so that the square of the amplitude varies with space
and time. We also found that these beats move with the so-called “group velocity”
given by

where Ak and Aw are the differences between the wave numbers and frequencies
for the two waves. For more complicated waves—made up of the sum of many
amplitudes all near the same frequency—the group velocity is

b, = Zi,:- (7.13)

Taking w = E,/f and k = p/h, we see that

0, = %’- (7.14)
Using Eq. (7.6), we have
‘-’d% = ¢? El;- (7.15)
But E, = Mc?, so
%1;—” =& (7.16)

which is just the classical velocity of the particle. Alternatively, if we use the non-
relativistic expressions, we have

w = 7:" and k = %,
and

(7.17)

do _dW d ( p2> P,
de — dp  dp M
which is again the classical velocity.

Our result, then, is that if we have several amplitudes for pure energy states
of nearly the same energy, their interference gives “lumps” in the probability that
move through space with a velocity equal to the velocity of a classical particle
of that energy. We should remark, however, that when we say we can add two
amplitudes of different wave number together to get a beat-note that will corre-
spond to a moving particle, we have introduced something new—something that
we cannot deduce from the theory of relativity. We said what the amplitude did
for a particle standing still and then deduced what it would do if the particle were
moving. But we cannor deduce from these arguments what would happen when
there are rwo waves moving with different speeds. If we stop one, we cannot stop
the other. So we have added tacitly the extra hypothesis that not only is (7.9) a
possible solution, but that there can also be solutions with all kinds of p’s for the
same system, and that the different terms will interfere.
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7-3 Potential energy; energy conservation

Now we would like to discuss what happens when the energy of a particle
can change. We begin by thinking of a particle which moves in a force field de-
scribed by a potential. We discuss first the effect of a constant potential. Suppose
that we have a large metal can which we have raised to some electrostatic potential
¢, as in Fig. 7-2. If there are charged objects inside the can, their potential energy
will be g¢, which we will call ¥, and will be absolutely independent of position.
Then there can be no change in the physics inside, because the constant potential
doesn’t make any difference so far as anything going on inside the can is concerned.
Now there is no way we can deduce what the answer should be, so we must make
a guess. The guess which works is more or less what you might expect: For the
energy, we must use the sum of the potential energy ¥ and the energy E,—which
is itself the sum of the internal and kinetic energies. The amplitude is proportional

to
e (HMUE p+V)t—p2]

(7.18)
The general principle is that the coefficient of 7, which we may call w, is always
given by the fotal energy of the system: internal (or “mass’™) energy, plus kinetic
energy, plus potential energy:

o = E, + V. (7.19)

Or, for nonrelativistic situations,

2

ho = Wi + £+ V. (7.20)

Now what about physical phenomena inside the box? If there are several
different energy states, what will we get? The amplitude for each state has the
same additional factor

il

over what it would have with V' = 0. That is just like a change in the zero of our
energy scale. It produces an equal phase change in all amplitudes, but as we have
seen before, this doesn’t change any of the probabilities. All the physical phenomena
are the same. (We have assumed that we are talking about different states of the
same charged object, so that g¢ is the same for all. If an object could change its
charge in going from one state to another, we would have quite another result,
but conservation of charge prevents this.)

So far, our assumption agrees with what we would expect for a cha(nge of
energy reference level. But if it is reaily right, it should hold for a potential’energy
that is not just a constant. In general, V could vary in any arbitrary way with
both time and space, and the complete result for the amplitude must be given in
terms of a differential equation. We don’t want to get concerned with the general
case right now, but only want to get some idea about how some things happen,
so we will think only of a potential that is constant in time and varies very slowly
in space. Then we can make a comparison between the classical and quantum ideas.

Suppose we think of the situation in Fig. 7-3, which has two boxes held at
the constant potentials ¢; and ¢, and a region in between where we will assume
that the potential varies smoothly from one to the other. We imagine that some
particle has an amplitude to be found in any one of the regions. We also assume
that the momentum is large enough so that in any small region in which there are
many wavelengths, the potential is nearly constant. We would then think that in
any part of the space the amplitude ought to look like (7.18) with the appropriate
V for that part of the space.

Let’s think of a special case in which ¢; = 0, so that the potential energy
there is zero, but in which g¢, is negative, so that classically the particle would
have more energy in the second box. Classically, it would be going faster in the
second box—it would have more energy and, therefore, more momentum. Let’s
see how that might come out of quantum mechanics.
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With our assumption, the amplitude in the first box would be proportional to
oMW it pi12M +V ) t—Pr3] 721

and the amplitude in the second box would be proportional to
M Wint+p3 2M V) t—P35] (1.22)

(Let’s say that the internal energy is not being changed, but remains the same in
both regions.) The question is: How do these two amplitudes match together
through the region between the boxes?

We are going to suppose that the potentials are gll constant in time—so that
nothing in the conditions varies. We will then suppose that the variations of the
amplitude (that is, its phase) have the same frequency everywhere—because, so
to speak, there is nothing in the “medium” that depends on time. If nothing in
the space is changing, we can consider that the wave in one region ‘“‘generates”
subsidiary waves all over space which will all oscillate at the same frequency—
just as light waves going through materials at rest do not change their frequency.
If the frequencies in (7.21) and (7.22) are the same, we must have that

p2 P2
Wine + 537 + V1 = Wi + 52 + Va. (123)

Both sides are just the classical total energies, so Eq. (7.23) is a statement of the
conservation of energy. In other words, the classical statement of the conservation
of energy is equivalent to the quantum mechanical statement that the frequencies
for a particle are everywhere the same if the conditions are not changing with time.
It all fits with the idea that #iw = E.

In the special example that ¥; = 0 and V', is negative, Eq. (7.23) gives that
P is greater than p,, so the wavelength of the waves is shorter in region 2. The
surfaces of equal phase are shown by the dashed lines in Fig. 7-3. We have also
drawn a graph of the real part of the amplitude, which shows again how the
wavelength decreases in going from region 1 to region 2. The group velocity of
the waves, which is p/M, also increases in the way one would expect from the
classical energy conservation, since it is just the same as Eq. (7.23).

There is an interesting special case where V', gets so large that Vo — V) is
greater than p2/2M. Then pZ, which is given by

2
Pl = 2M[2£A~14 — Vot Vl]’ (7.24)

is negative. That means that p, is an imaginary number, say, ip’. Classically, we
would say that the particle never gets into region 2—it doesn’t have enough energy
to climb the potential hill. Quantum mechanically, however, the amplitude is still
given by Eq. (7.22); its space variation still goes as

e(i/ﬁ)Pz"‘.

But if p, is imaginary, the space dependence becomes a real exponential. Say that
the particle was initially going in the + x-direction; then the amplitude would
vary as

P, (7.25)

The amplitude decreases rapidly with increasing x.

Imagine that the two regions at different potentials were very close together,
so that the potential energy changed suddenly from ¥y to ¥V, as shown in Fig.
7-4(a). If we plot the real part of the probability amplitude, we get the dependence
shown in part (b) of the figure. The wave in the first region corresponds to a
particle trying to get into the second region, but the amplitude there falls off
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rapidly. There is some chance that it will be observed in the second region—where
it could never get classically—but the amplitude is very small except right near
the boundary. The situation is very much like what we found for the total internal
reflection of light. The light doesn’t normally get out, but we can observe it if we
put something within a wavelength or two of the surface.

You will remember that if we put a second surface close to the boundary where
light was totally reflected, we could get some light transmitted into the second piece
of material. The corresponding thing happens to particles in quantum mechanics.
If there is a narrow region with a potential ¥, so great that the classical kinetic
energy would be negative, the particle would classically never get past. But quan-
tum mechanically, the exponentially decaying amplitude can reach across the
region and give a small probability that the particle will be found on the other side
where the kinetic energy is again positive. The situation is illustrated in Fig. 7-5.
This effect is called the quantum mechanical “penetration of a barrier.”

The barrier penetration by a quantum mechanical amplitude gives the ex-
planation—or description—of the o-particle decay of a uranium nucleus. The
potential energy of an a-particle, as a function of the distance from the center, is
shown in Fig. 7-6(a). If one tried to shoot an a-particle with the energy E ino
the nucleus, it would feel an electrostatic repulsion from the nuclear charge z and
would, classically, get no closer than the distance r, where its total energy is equal
to the potential energy V. Closer in, however, the potential energy is much lower
because of the strong attraction of the short-range nuclear forces. How is it then
that in radioactive decay we find a-particles which started out inside the nucleus
coming out with the energy E? Because they start out with the energy E inside
the nucleus and “leak’ through the potential barrier. The probability amplitude
is roughly as sketched in part (b) of Fig. 7-6, although actually the exponential
decay is much larger than shown. It is, in fact, quite remarkable that the mean
life of an a-particle in the uranium nucleus is as long as 44 billion years, when the
natural oscillations inside the nucleus are so extremely rapid—about 1022 per sec!
How can one get a number like 10° years from 10722 sec? The answer is that the
exponential gives the tremendously small factor of about e~*°—which gives the
very small, though definite, probability of leakage. Once the a-particle is in the
nucleus, there is almost no amplitude at all for finding it outside; however, if you
take many nuclei and wait long enough, you may be lucky and find one that has
come out.
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7-4 Forces; the classical limit

Suppose that we have a particle moving along and passing through a region
where there is a potential that varies at right angles to the motion. Classically, we
would describe the situation as sketched in Fig. 7-7. If the particle is moving
along the x-direction and enters a region where there is a potential that varies
with y, the particle will get a transverse acceleration from the force F = —a¥V/dy.
If the force is present only in a limited region of width w, the force will act only for
the time w/v. The particle will be given the transverse momentum

w
Pu=F’1;"

The angle of deflection 86 is then

80 = — = = (7.26)

It is now up to us to see if our idea that the waves go as (7.20) will explain
the same result. We look at the same thing quantum mechanically, assuming that
everything is on a very large scale compared with a wavelength of our probability
amplitudes. In any small region we can say that the amplitude varies as

=MW 40" [2M V)t —Pe%] (1.27)
Can we see that this will also give rise to a deflection of the particle when V has
a transverse gradient? We have sketched in Fig. 7-8 what the waves of prob-
ability amplitude will look like. We have drawn a set of ““‘wave nodes” which you
can think of as surfaces where the phase of the amplitude is zero. In every small
region, the wavelength—the distance between successive nodes—is

A= 2
where p is related to V through
W + p_2 + V = const. (7.28)
2M

In the region where ¥ is larger, p is smaller, and the wavelength is longer. So the
angle of the wave nodes gets changed as shown in the figure.

To find the change in angle of the wave nodes we notice that for the two
paths « and b in Fig. 7-8 there is a difference of potential AV = (aV/dy)D, so
there is a difference Ap in the momentum along the two tracks which can be
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obtained from (7.28):

2
A(ﬁ) = A% Ap = —AV. (1.29)
The wave number p/% is, therefore, different along the two paths, which means
that the phase is advancing at a different rate. The difference in the rate of increase
of phase is Ak = Ap/#, so the accumulated phase difference in the total distance
w is

_4p, M

W= — 2 AV-w. (7.30)

A(phase) = Ak - w 5 o

This is the amount by which the phase on path b is “ahead” of the phase on path
a as the wave leaves the strip. But outside the strip, a phase advance of this amount
corresponds to the wave node being ahead by the amount

A i
Ax = 3 A(phase) = > A(phase)

or

M
Ax = — 7 AV - w. (7.31)

Referring to Fig. 7-8, we see that the new wavefronts will be at the angle 86
given by

Ax = D §6; (7.32)
so we have
M -
D& = — D AV - w. (7.33)

This is identical to Eq. (7.26) if we replace p/m by v and AV/D by 9V/ay.

The result we have just got is correct only if the potential variations are slow
and smooth—in what we call the classical limit. We have shown that under these
conditions we will get the same particle motions we get from F = ma, provided
we assume that a potential contributes a phase to the probability amplitude equal
to Vi/#. In the classical limit, the quantum mechanics will agree with Newtonian
mechanics.

7-5 The ““precession’’ of a spin one-half particle

Notice that we have not assumed anything special about the potential energy—
it is just that energy whose derivative gives a force. For instance, in the Stern-
Gerlach experiment we had the energy U = —pu - B, which gives a force if B has a
spatial variation. If we wanted to give a quantum mechanical description, we
would have said that the particles in one beam had an energy that varied one way
and that those in the other beam had an opposite energy variation. (We could
put the magnetic energy U into the potential energy V or into the “internal”
energy W; it doesn’t matter.) Because of the energy variation, the waves are
refracted, and the beams are bent up or down. (We see now that quantum me-
chanics would give us the same bending as we would compute from the classical
mechanics.)

From the dependence of the amplitude on potential energy we would also
expect that if a particle sits in a uniform magnetic field along the z-direction, its
probability amplitude must be changing with time according to

o GIM(—H:B)E
(We can consider that this is, in effect, a definition of u..) In other words, if we
place a particle in a uniform field B for a time 7, its probability amplitude will be

multiplied by
e—%ﬂﬁx—#zBW
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over what it would be in no field. Since for a spin one-half particle, u, can be
either plus or minus some number, say u, the two possible states in a uniform
field would have their phases changing at the same rate but in opposite direc-
tions. The two amplitudes get multiplied by

HMKET, (7.34)

This result has some interesting consequences. Suppose we have a spin one-
half particle in some state that is not purely spin up or spin down. We can describe
its condition in terms of the amplitudes to be in the pure up and pure down states.
But in a magnetic field, these two states will have phases changing at a different
rate. So if we ask some question about the amplitudes, the answer will depend
on how long it has been in the field.

As an example, we consider the disintegration of the muon in a magnetic
field. When muons are produced as disintegration products of 7-mesons, they are
polarized (in other words, they have a preferred spin direction). The muons, in
turn, disintegrate—in about 2.2 microseconds on the average—emitting an electron
and two neutrinos:

u—e+v+7

In this disintegration it turns out that (for at least the highest energies) the electrons
are emitted preferentially in the direction opposite to the spin direction of the muon.

Suppose then that we consider the experimental arrangement shown in Fig.
7-9. If polarized muons enter from the left and are brought to rest in a block of
material at A4, they will, a little while later, disintegrate. The electrons emitted
will, in general, go off in all possible directions. Suppose, however, that the muons
all enter the stopping block at 4 with their spins in the x-direction. Without a
magnetic field there would be some angular distribution of decay directions; we
would like to know how this distribution is changed by the presence of the mag-
netic field. We expect that it may vary in some way with time. We can find out
what happens by asking, for any moment, what the amplitude is that the muon
will be found in the (4 x) state.

We can state the problem in the following way: A muon is known to have
its spin in the -+ x-direction at + = 0; what is the amplitude that it will be in the
same state at the time 7? Now we do not have any rule for the behavior of a spin
one-half particle in a magnetic field at right angles to the spin, but we do know what
happens to the spin up and spin down states with respect to the field—their ampli-
tudes get multiplied by the factor (7.34). Our procedure then is to choose the
representation in which the base states are spin up and spin down with respect
to the z-direction (the field direction). Any question can then be expressed with
reference to the amplitudes for these states.

Let’s say that y(¢) represents the muon state. When it enters the block 4, its
state is ¥(0), and we want to know (7) at the later time 7. If we represent the two
base states by (4z) and (—z) we know the two amplitudes (+z |y(0)) and
(=2 | $(0))—we know these amplitudes because we know that y(0) represents a
state with the spin in the (+x) state. From the results of the last chapter, these
amplitudes aret
1
v
and (7.35)

(—z]4x) = C_= —-

(+z]+x) = Cy =

N

They happen to be equal. Since these amplitudes refer to the condition at 7 = O,
let’s call them C(0) and C_(0).

t If you skipped Chapter 6, you can just take (7.35) as an underived rule for now.
We will give later (in Chapter 10) a more complete discussion of spin precession, including
a derivation of these amplitudes.
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Fig. 7-10. Time dependence of the
probability that a spin one-half particle
will be in a {-+) state with respect to the

x-axis.

Now we know what happens to these two amplitudes with time. Using
(7.34), we have

Co(t) = C(0)e 1M
" (1.36)
c_(t) = C_(O)e+(z‘/h>u13:

But if we know C_(r) and C_(1), we have all there is to know about the condition
at 1. The only trouble is that what we want to know is the probability that at ¢
the spin will be in the +x-direction. Our general rules can, however, take care of
this problem. We write that the amplitude to be in the (4x) state at time ¢, which
we may call 4,(2), is

A() = (Fx|90) = x| +2(Fz [ $0) + x| —20{(=z[¢¥1)
or

AL = (+x | +2)C1 () + (+x| =2)C-0). (7.37)

Again using the results of the last chapter—or better the equality (¢ |X) =
(X | $)* from Chapter 5—we know that

A
V2

So we know all the quantities in Eq. (7.37). We get

(x| +2) = (x| —2) = Viz

A+(z) = %eﬂ/ﬁ)unz + %e—‘“/ﬁ)uBl‘
or

A (f) = cos H—’? t.
A particularly simple result! Notice that the answer agrees with what we expect
for 1 = 0. We get 4,(0) = 1, which is right, because we assumed that the muon
was in the (+x) state at ¢ = 0.
The probability P, that the muon will be found in the (+x) state at ¢ is
(41)? or
2 }.LBt .

P+ = COS“—h‘—

The probability oscillates between zero and one, as shown in Fig. 7-10. Note
that the probability returns to one for uBt/h = m (not 2w). Because we have

squared the cosine function, the probability repeats itself with the frequency
2uB/h.

PROB. TO HAVE
SPIN IN +x DIR

U8
¥ T
Thus, we find that the chance of catching the decay electron in the electron
counter of Fig. 7-9 varies periodically with the length of time the muon has been
sitting in the magnetic field. The frequency depends on the magnetic moment .
The magnetic moment of the muon has, in fact, been measured in just this way.
We can, of course, use the same method to answer any other questions about
the muon decay. For example, how does the chance of detecting a decay electron
7-12
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in the y-direction at 90° to the x-direction but still at right angles to the field depend
on 1?7 If you work it out, the amplitude to be in the () state varies as
cos? {(uBt/f) — w/4}, which oscillates with the same period but reaches its max-
imum one-quarter cycle later, when uBt/f = m/4. In fact, what is happening is
that as time goes on, the muon goes through a succession of states which correspond
to complete polarization in a direction that is continually rotating about the z-axis.
We can describe this by saying that the spin is precessing at the frequency

_ B

. (7.38)

Wp

You can begin to see the form that our quantum mechanical description
will take when we are describing how things behave in time.
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8

The Hamiltonian Maitrix

8-1 Amplitudes and vectors

Before we begin the main topic of this chapter, we would like to describe a
number of mathematical ideas that are used a lot in the literature of quantum
mechanics. Knowing them will make it easier for you to read other books or
papers on the subject. The first idea is the close mathematical resemblance between
the equations of quantum mechanics and those of the scalar product of two vectors.
You remember that if X and ¢ are two states, the amplitude to start in ¢ and end
up in X can be written as a sum over a complete set of base states of the amplitude
to go from ¢ into one of the base states and then from that base state out again
into X:

(o) = 20 (x| iile). (GRY

all 7

We explained this in terms of a Stern-Gerlach apparatus, but we remind you that
there is no need to have the apparatus. Equation (8.1) is a mathematical law that
is just as true whether we put the filtering equipment in or not—it is not always
necessary to imagine that the apparatus is there. We can think of it simply as a
formula for the amplitude (X | ¢).

We would like to compare Eq. (8.1) to the formula for the dot product of
two vectors B and A. If B and A are ordinary vectors in three dimensions, we can
write the dot product this way:

> (B eei- A), (8.2)

all ¢

with the understanding that the symbol e, stands for the three unit vectors in the
x, y, and z-directions. Then B - ¢, is what we ordinarily call B,; B - e, is what we
ordinarily call B,; and so on. So Eq. (8.2) is equivalent to

BzAn: + ByAy + BzA29

which is the dot product B - 4.

Comparing Eqs. (8.1) and (8.2), we can see the following analogy: The
states X and ¢ correspond to the two vectors 4 and B. The base states i correspond
to the special vectors e; to which we refer all other vectors. Any vector can be
represented as a linear combination of the three “base vectors” e;. Furthermore,
if you know the coefficients of each “base vector” in this combination—that is,
its three components—you know everything about a vector. In a similar way,
any quantum mechanical state can be described completely by the amplitude
(i| ) to go into the base states; and if you know these coefficients, you know
everything there is to know about the state. Because of this close analogy, what
we have called a “state” is often also called a ‘‘state vector.”

Since the base vectors e; are all at right angles, we have the relation

€; ey = 51‘]‘. (83)
This corresponds to the relations (5.25) among the base states i,
@) = 6 (8.4)

You see now why one says that the base states / are all “orthogonal.”
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There is one minor difference between Eq. (8.1) and the dot product. We
have that

x| o). (8.5)

A'B= B A

(¢ 1%)

But in vector algebra,

With the complex numbers of quantum mechanics we have to keep straight the
order of the terms, whereas in the dot product, the order doesn’t matter.
Now consider the following vector equation:

A= efe;- A). (8.6)

2

It’s a little unusual, but correct. It means the same thing as
A= Adie; = Ase, + Aye, + Ae.. (8.7

Notice, though, that Eq. (8.6) involves a quantity which is different from a dot
product. A dot product is just a number, whereas Eq. (8.6) is a vector equation.
One of the great tricks of vector analysis was to abstract away from the equations
the idea of a vector itself. One might be similarly inclined to abstract a thing that
is the analog of a “vector” from the quantum mechanical formula Eq. (8.1)—and
one can indeed. We remove the (x| from both sides Eq. (8.1) and write the
following equation (don’t get frightened—it’s just a notation and in a few minutes
you will find out what the symbols mean):

lo) = 22 1iXi]9). (8:8)

One thinks of the bracket (x | ¢) as being divided into two pieces. The second
piece | ¢) is often called a ket, and the first piece (X | is called a bra (put together,
they make a “bra-ket”—a notation proposed by Dirac); the half-symbols (X | and
| ¢) are also called state vectors. In any case, they are not numbers, and, in general,
we want the results of our calculations to come out as numbers; so such “unfinished”
quantities are only part-way steps in our calculations.

It happens that until now we have written all our results in terms of numbers.
How have we managed to avoid vectors? Itis amusing to note that even in ordinary
vector algebra we could make all equations involve only numbers. For instance,
instead of a vector equation like

F = ma,
we could always have written
C-F = C- (ma).

We have then an equation between dot products that is true for any vector C.
But if it is true for any C, it hardly makes sense at all to keep writing the C!

Now look at Eq. (8.1). It is an equation that is true for any X. So to save
writing, we should just leave ouf the X and write Eq. (8.8) instead. It has the same
information provided we understand that it should always be “finished” by “multi-
plying on the left by”—which simply means reinserting—some (X | on both sides.
So Eq. (8.8) means exactly the same thing as Eq. (8.1)—no more, no less. When
you want numbers, you put in the (X | you want.

Maybe you have already wondered about the ¢ in Eq. (8.8). Since the equa-
tion is true for any ¢, why do we keep i¢? Indeed, Dirac suggests that the ¢ also
can just as well be abstracted away, so that we have only

| =22 1. (8.9)

And this is the great law of quantum mechanics! (There is no analog in vector
analysis.) It says that if you put in any two states X and ¢ on the left and right of
both sides, you get back Eq. (8.1). It is not really very useful, but it’s a nice
reminder that the equation is true for any two states.
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8-2 Resolving state vectors

Let’s look at Eq. (8.8) again; we can think of it in the following way. Any
state vector | ¢) can be represented as a linear combination with suitable coefficients
of a set of base “vectors”—or, if you prefer, as a superposition of “unit vectors”
in suitable proportions. To emphasize that the coefficients (i | ¢) are just ordinary
(complex) numbers, suppose we write

(il¢)y = Ci.
Then Eq. (8.8) is the same as

[6) = 22 [4)Cs (8.10)

We can write a similar equation for any other state vector, say | X), with, of course,
different coefficients—say D;. Then we have

| x) = Z | i)D;. @3.1D)

The D; are just the amplitudes (i | x).
Suppose we had started by abstracting the ¢ from Eq. (8.1). We would
have had
(=20 xlixil. (8.12)

7
Remembering that (x | i) = (i | X)*, we can write this as

(x| = Z DY (. (8.13)

Now the interesting thing is that we can just multiply Eq. (8.13) and Eq. (8.10)
to get back (X | ). When we do that, we have to be careful of the summation
indices, because they are quite distinct in the two equations. Let’s first rewrite
Eq. (8.13) as

x| =22 Dl
i
which changes nothing. Then putting it together with Eq. (8.10), we have
(xle) = > D (jIHCs (8.14)
ij

Remember, though, that (j|i) = &, so that in the sum we have left only the
terms with j = i. We get
(x|¢y = >, DI C, (8.15)

where, of course, D* = (i|x)* = (x|i), and C; = (i|¢). Again we see the
close analogy with the dot product

A-B =) AB.

The only difference is the complex conjugate on D,. So Eq. (8.15) says that if
the state vectors (X | and | ¢) are expanded in terms of the base vectors (i | or | i),
the amplitude to go from ¢ to X is given by the kind of dot product in Eq. (8.15).
This equation is, of course, just Eq. (8.1) written with different symbols. So we
have just gone in a circle to get used to the new symbols.

We should perhaps emphasize again that while space vectors in three dimen-
sions are described in terms of three orthogonal unit vectors, the base vectors | i)
of the quantum mechanical states must range over the complete set applicable to
any particular problem. Depending on the situation, two, or three, or five, or an
infinite number of base states may be involved.

We have also talked about what happens when particles go through an
apparatus. If we start the particles out in a certain state ¢, then send them through
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an apparatus, and afterward make a measurement to see if they are in state X, the
result is described by the amplitude

(x| 4]¢). (8.16)

Such a symbol doesn’t have a close analog in vector algebra. (It is closer to tensor
algebra, but the analogy is not particularly useful.) We saw in Chapter 5, Eq.
(5.32), that we could write (8.16) as

(x| alg) =25 xiidil4] i) e (8.17)

This is just an example of the fundamental rule Eq. (8.9), used twice.
We also found that if another apparatus B was added in series with A4, then we
could write
(X|BAlg) = D X|i)i|BI NG| A|k)k| ). (8.18)

ik

Again, this comes directly from Dirac’s method of writing Eq. (8.9)—remember
that we can always place a bar (|), which is just like the factor 1, between B and A.

Incidentally, we can think of Eq. (8.17) in another way. Suppose we think
of the particle entering apparatus A in the state ¢ and coming out of A4 in the state
¥ (“psi”). In other words, we could ask ourselves this question: Can we find a ¢
such that the amplitude to get from y to X is always identically and everywhere the
same as the amplitude (x | 4 | $)? The answer is yes. We want Eq. (8.17) to be
replaced by

Xy = 25 (x[ii[¥). (8.19)
We can clearly do this if

@lyy =22 Q1AL 19) = (il 4]e), (8.20)

which determines y. “But it doesn’t determine y,” you say; “it only determines
(i |¥).” However, {i | ¢) does determine ¢, because if you have all the coefficients
that relate y to the base states /, then y is uniquely defined. In fact, we can play
with our notation and write the last term of Eq. (8.20) as

gy =22 Gl 4]e). @.21)

Then, since this equation is true for all i, we can write simply

1) =22 11 4]e). (8.22)

Then we can say: “The state y is what we get if we start with ¢ and go through the
apparatus A4.”

One final example of the tricks of the trade. We start again with Eq. (8.17).
Since it is true for any X and ¢, we can drop them both! We then gett

A= 21 DGLALNG] (8.23)

What does it mean? It means no more, no less, than what you get if you put back
the ¢ and X. As it stands, it is an “open” equation and incomplete. If we multiply
it “on the left” by | ¢), it becomes

Ale) = 251D ALIXG 16), (8.24)

T You might think we should write | 4| instead of just 4. But then it would look like
the symbol for “absolute value of A4, so the bars are usually dropped. In general, the
bar (|) behaves much like the factor one.

8-4



which is just Eq. (8.22) all over again. In fact, we could have just dropped the
j’s from that equation and written

) = 4] é) (8.25)

The symbol A is neither an amplitude, nor a vector; it is a new kind of thing
called an operator. It is something which “operates on” a state to produce a new
state—Eq. (8.25) says that | ) is what results if 4 operates on | ¢). Again, it is
still an open equation until it is completed with some bra like (X | to give

x|y = (x| 4] ¢) (8.26)

The operator 4 is, of course, described completely if we give the matrix of ampli-
tudes (i | 4 | j)—also written A;;—in terms of any set of base vectors.

We have really added nothing new with all of this new mathematical notation.
One reason for bringing it all up was to show you the way of writing pieces of
equations, because in many books you will find the equations written in the
incomplete forms, and there’s no reason for you to be paralyzed when you come
across them. If you prefer, you can always add the missing pieces to make an
equation between numbers that will look like something more familiar.

Also, as you will see, the “bra’ and “ket” notation is a very convenient one.
For one thing, we can from now on identify a state by giving its state vector.
When we want to refer to a state of definite momentum p we can say: “the state
[p)”. Or we may speak of some arbitrary state | ¢). For consistency we will
always use the ket, writing | ¥), to identify a state. (It is, of course an arbitrary
choice; we could equally well have chosen to use the bra, (¢ |.)

8-3 What are the base states of the world?

We have discovered that any state in the world can be represented as a super-
position—a linear combination with suitable coefficients—of base states. You
may ask, first of all, what base states? Well, there are many different possibilities.
You can, for instance, project a spin in the z-direction or in some other direction.
There are many, many different representations, which are the analogs of the differ-
ent coordinate systems one can use to represent ordinary vectors. Next, what
coefficients? Well, that depends on the physical circumstances. Different sets of
coefficients correspond to different physical conditions. The important thing to
know about is the “space” in which you are working—in other words, what the
base states mean physically. So the first thing you have to know about, in gen-
eral, is what the base states are like. Then you can understand how to describe a
situation in terms of these base states.

We would like to look ahead a little and speak a bit about what the general
quantum mechanical description of nature is going to be—in terms of the now
current ideas of physics, anyway. First, one decides on a particular representation
for the base states—different representations are always possible. For example,
for a spin one-half particle we can use the plus and minus states with respect to the
z-axis. But there’s nothing special about the z-axis—you can take any other axis
you like. For consistency we’ll always pick the z-axis, however. Suppose we begin
with a situation with one electron. In addition to the two possibilities for the spin
(“up”and “down” along the z-direction), there is also the momentum of the electron.
We pick a set of base states, each corresponding to one value of the momentum.
What if the electron doesn’t have a definite momentum? That’s all right;
we're just saying what the base states are. If the electron hasn’t got a definite
momentum, it has some amplitude to have one momentum and another amplitude
to have another momentum, and so on. And if it is not necessarily spinning
up, it has some amplitude to be spinning up going at this momentum, and some
amplitude to be spinning down going at that momentum, and so on. The
complete description of an electron, so far as we know, requires only that the
base states be described by the momentum and the spin. So one acceptable set of
base states | ) for a single electron refer to different values of the momentum and
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whether the spin is up or down. Different mixtures of amplitudes—that is, differ-
ent combinations of the C’s describe different circumstances. What any particular
electron is doing is described by telling with what amplitude it has an up-spin or a
down-spin and one momentum or another—for all possible momenta. So you
can see what is involved in a complete quantum mechanical description of a
single electron.

What about systems with more than one ¢lectron? Then the base states get
more complicated. Let’s suppose that we have two electrons. We have, first of all,
four possible states with respect to spin: both electrons spinning up, the first one
down and the second one up, the first one up and the second one down, or both
down. Also we have to specify that the first electron has the momentum p,, and
the second electron, the momentum p,. The base states for two clectrons require
the specification of two momenta and two spin characters. With seven electrons,
we have to specify seven of each.

If we have a proton and an electron, we have to specify the spin direction of the
proton and its momentum, and the spin direction of the electron and its momen-
tum. At least that’s approximately true. We do not really know what the correct
representation is for the world. It is all very well to start out by supposing that if
you specify the spin in the electron and its momentum, and likewise for a proton,
you will have the base states; but what about the *‘guts” of the proton? Let’s
look at it this way. In a hydrogen atom which has one proton and one electron.
we have many different base states to describe—up and down spins of the proton
and electron and the various possible momenta of the proton and electron. Then
there are different combinations of amplitudes C; which together describe the
character of the hydrogen atom in different states. But suppose we look at the
whole hydrogen atom as a “particle.” If we didn’t know that the hydrogen atom
was made out of a proton and an electron, we might have started out and said:
“Oh, T know what the base states are—they correspond to a particular momentum
of the hydrogen atom.” No, because the hydrogen atom has internal parts.
It may, therefore, have various states of different internal energy, and describing
the real nature requires more detail.

The question is: Does a proton have internal parts? Do we have to describe
a proton by giving all possible states of protons, and mesons, and strange particles?
We don’t know. And even though we suppose that the electron is simple, so that
all we have to tell about it is its momentum and its spin, maybe tomorrow we will
discover that the electron also has inner gears and wheels. It would mean that our
representation is incomplete, or wrong, or approximate—in the same way that a
representation of the hydrogen atom which describes only its momentum would be
incomplete, because it disregarded the fact that the hydrogen atom could have
become excited inside. If an electron could become excited inside and turn into
something else like, for instance, a muon, then it would be described not just by
giving the states of the new particle, but presumably in terms of some more com-
plicated internal wheels. The main problem in the study of the fundamental particles
today is to discover what are the correct representations for the description of
nature. At the present time, we guess that for the electron it is enough to specify
its momentum and spin. We also guess that there is an idealized proton which has
its m-mesons, and k-mesons, and so on, that all have to be specified. Several dozen
particles—that’s crazy! The question of what is a fundamental particle and what
is not a fundamental particle—a subject you hear so much about these days—is
the question of what is the final representation going to look like in the ultimate
quantum mechanical description of the world. Will the electron’s momentum
still be the right thing with which to describe nature? Or even, should the whole
question be put this way at all! This question must always come up in any scientific
investigation. At any rate, we see a problem—how to find a representation. We
don’t know the answer. We don’t even know whether we have the “right” problem,
but if we do, we must first attempt to find out whether any particular particle is
“fundamental” or not.

In the nonrelativistic quantum mechanics—if the energies are not too high,
so that you don’t disturb the inner workings of the strange particles and so forth—
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you can do a pretty good job without worrying about these details. You can just
decide to specify the momenta and spins of the electrons and of the nuclei; then
everything will be all right. In most chemical reactions and other low-energy
happenings, nothing goes on in the nuclei; they don’t get excited. Furthermore,
if a hydrogen atom is moving slowly and bumping quietly against other hydrogen
atoms—never getting excited inside, or radiating, or anything complicated like
that, but staying always in the ground state of energy for internal motion—you
can use an approximation in which you talk about the hydrogen atom as one
object, or particle, and not worry about the fact that it can do something inside.
This will be a good approximation as long as the kinetic energy in any collision
is well below 10 electron volts—the energy required to excite the hydrogen atom to
a different internal state. We will often be making an approximation in which
we do not include the possibility of inner motion, thereby decreasing the number
of details that we have to put into our base states. Of course, we then omit some
phenomena which would appear (usually) at some higher energy, but by making
such approximations we can simplify very much the analysis of physical problems.
For example, we can discuss the collision of two hydrogen atoms at low energy—or
any chemical process—without worrying about the fact that the atomic nuclei
could be excited. To summarize, then, when we can neglect the effects of any
internal excited states of a particle we can chocse a base set which are the states of
definite momentum and z-component of angular momentum.

One problem then in describing nature is to find a suitable representation for
the base states. But that’s only the beginning. We still want to be able to say what
“happens.” If we know the “condition” of the world at one moment, we would like
to know the condition at a later moment. So we also have to find the laws that
determine how things change with time. We now address ourselves to this second
part of the framework of quantum mechanics—how states change with time.

8-4 How states change with time

We have already talked about how we can represent a situation in which we
put something through an apparatus. Now one convenient, delightful “apparatus™
to consider is merely a wait of a few minutes; that is, you prepare a state ¢, and
then before you analyze it, you just let it sit. Perhaps you let it sit in some particular
electric or magnetic field—it depends on the physical circumstances in the world.
At any rate, whatever the conditions are, you let the object sit from time 7, to
time 7. Suppose that it is let out of your first apparatus in the condition ¢ at 7;.
And then it goes through an “apparatus,” but the “apparatus” consists of just
delay until 5. During the delay, various things could be going on—external forces
applied or other shenanigans—so that something is happening. At the end of the
delay, the amplitude to find the thing in some state X is no longer exactly the same
as it would have been without the delay. Since “waiting” is just a special case of
an “apparatus,” we can describe what happens by giving an amplitude with the
same form as Eq. (8.17). Because the operation of “waiting” is especially impor-
tant, we’ll call it U instead of 4, and to specify the starting and finishing times 74
and 7o, we'll write U(¢5, 11). The amplitude we want is

(x| Ultz, 1) | ¢)- (8.27)

Like any other such amplitude, it can be represented in some base system or other
by writing it
> Ol il Ults, 1)1 )47 | @). (8.28)
i

Then U is completely described by giving the whole set of amplitudes—the matrix

(i] Ultz, 1) | J)- (8.29)

We can point out, incidentally, that the matrix (i | U(r2, t,) | j) gives much
more detail than may be needed. The high-class theoretical physicist working in
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high-energy physics considers problems of the following general nature (because
it’s the way experiments are usually done). He starts with a couple of particles,
like a proton and a proton, coming together from infinity. (In the lab, usually one
particle is standing still, and the other comes from an accelerator that is practically
at infinity on atomic level.) The things go crash and out come, say, two k-mesons,
six w-mesons, and two neutrons in certain directions with certain momenta.
What’s the amplitude for this to happen? The mathematics looks like this:
The ¢-state specifies the spins and momenta of the incoming particles. The x
would be the question about what comes out. For instance, with what amplitude
do you get the six mesons going in such-and-such directions, and the two neutrons
going off in these directions, with their spins so-and-so. In other words, X would
be specified by giving all the momenta, and spins, and so on of the final products.
Then the job of the theorist is to calculate the amplitude (8.27). However, he is
really only interested in the special case that 7y is — w0 and 75 is +w. (There is
no experimental evidence on the details of the process, only on what comes in
and what goes out.) The limiting case of U(ro, 71) as t; — — o and o — + o0
is called S, and what he wants is

xS 4.

Or, using the form (8.28), he would calculate the matrix

il S|,

which is called the S-matrix. So if you see a,theoretical physicist pacing the floor
and saying, “All T have to do is calculate the S-matrix,” you will know what he
is worried about.

How to analyze—how to specify the laws for—the S-matrik is an interesting
question. In relativistic quantum mechanics for high energies, it is done one way,
but in nonrelativistic quantum mechanics it can be done another way, which is
very convenient. (This other way can also be done in the relativistic case, but then
it is not so convenient.) It is to work out the U-matrix for a small interval of time
in other words for 7, and 7, close together. If we can find a sequence of such U’s
for successive intervals of time we can watch how things go as a function of time.
You can appreciate immediately that this way is not so good for relativity, because
you don’t want to have to specify how everything looks “simultaneously” every-
where. But we won’t worry about that—we’re just going to worry about non-
relativistic mechanics.

Suppose we think of the matrix U for a delay from ¢, until 3 which is greater
than 7,. In other words, let’s take three successive times: 7, less than 7, less than 75.
Then we claim that the matrix that goes between ¢, and 73 is the product in suc-
cession of what happens when you delay from 7, until £, and then from 7, until 3.
It’s just like the situation when we had two apparatuses B and A in series. We can
then write, following the notation of Section 5-6,

Ults, t1) = Ulrs, t2) - Uty ty). (8.30)

In other words, we can analyze any time interval if we can analyze a sequence of
short time intervals in between. We just multiply together all the pieces; that’s the
way that quantum mechanics is analyzed nonrelativistically.

Our problem, then, is to understand the matrix U(7,, t;) for an infinitesimal
time interval—for 1o = 1; + Ar. We ask ourselves this: If we have a state ¢
now, what does the state look like an infinitesimal time Ar later? Let’s see how we
write that out. Call the state at the time 7, | (1)) (we show the time dependence
of ¥ to be perfectly clear that we mean the condition at the time 7). Now we ask
the question: What is the condition after the small interval of time Ar later? The
answer is

[yt + An) = Ut + At 1) | (). (8.31)

This means the same as we meant by (8.25), namely, that the amplitude to
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find x at the time ¢ 4 At, is

x| + Ay = x| U + a0 [ (). (8.32)

Since we’re not yet too good at these abstract things, let’s project our ampli-
tudes into a definite representation. If we multiply both sides of Eg. (8.31)
by (i |, we get

i1 + Aan) = Gl UE + AL D[ ¥(@)- (8.33)

We can also resolve the | (7)) into base states and write

@1+ An) = 30 @1 UG+ AL D )G D) (8.34)

We can understand Eq. (8.34) in the following way. If we let Cy(1)= ARI0);
stand for the amplitude to be in the base state / at the time 7, then we can think
of this amplitude (just a number, remember!) varying with time. Each C; becomes
a function of 7. And we also have some information on how the amplitudes
C; vary with time. Each amplitude at (¢ + A7) is proportional to all of the other
amplitudes at ¢ multiplied by a set of coefficients. Let’s call the U-matrix Uy;, by
which we mean

Ui = (| UJ)

Then we can write Eq. (8.34) as
Cit + A1) = Y Uit + A, DCi(D). (8.35)
j

This, then, is how the dynamics of quantum mechanics is going to look.

We don’t know much about the U;; yet, except for one thing. We know that
if At goes to zero, nothing can happen—we should get just the original state. So,
Uz — 1 and U;; — 0, if i # j. In other words, U;; — 8;; for At — 0. Also, we
can suppose that for small Az, each of the coefficients Us; should differ from é;;
by amounts proportional to Az; so we can write

U;; = 6; + Kij At (8.36)

However, it is usual to take the factor (—i/A)t out of the coefficients K;;, for
historical and other reasons; we prefer to write

Uit + At 1) = 85 — %Hz-,-(t) At. (8.37)
It is, of course, the same as Eq. (8.36) and, if you wish, just defines the coefficients
H;;(f). The terms H;; are just the derivatives with respect to 7, of the coefficients

Uij(ts, ty), evaluated at 1, = t; = 1.
Using this form for U in Eq. (8.35), we have

C.(t + A = Z [5“' —_ % H; (1) At] Ci(0). (8.38)

Taking the sum over the &;; term, we get just Ci(?), which we can put on the other
side of the equation. Then dividing by Az, we have what we recognize as a derivative

Ci(t + AAIZ -G _ _ % ; HADCi(D)
or
i 290 _ 5 msmeio. (8.39)

T We are in a bit of trouble here with notation. In the factor (—i/#), the i means the
imaginary unit v/ —1, and not the index i that refers to the ith base state! We hope that
you won'’t find it too confusing.
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You remember that Ci(7) is the amplitude (i | ¥) to find the state ¢ in one of
the base states i (at the time 7). So Eq. (8.39) tells us how each of the coefficients
{i | ¢) varies with time. But that is the same as saying that Eq. (8.39) tells us how
the state y varies with time, since we are describing y in terms of the amplitudes
(i | ¥). The variation of y in time is described in terms of the matrix H;;. which has
to include, of course, the things we are doing to the system to cause it to change.
If we know the H,;—which contains the physics of the situation and can, in general,
depend on the time—we have a complete description of the behavior in time of the
system. Equation (8.39) is then the quantum mechanical law for the dynamics
of the world.

(We should say that we will always take a set of base states which are fixed
and do not vary with time. There are people who use base states that also vary.
However, that’s like using a rotating coordinate system in mechanics, and we
don’t want to get involved in such complications.)

8-5 The Hamiltonian matrix

The idea, then, is that to describe the quantum mechanical world we need to
pick a set of base states i and to write the physical laws by giving the matrix of
coefficients H,;. Then we have everything—we can answer any question about
what will happen. So we have to learn what the rules are for finding the H’s to go
with any physical situation—what corresponds to a magnetic field, or an electric
field, and so on. And that’s the hardest part. For instance, for the new strange
particles, we have no idea what H;;’s to use. In other words, no one knows the
complete H;; for the whole world. (Part of the difficulty is that one can hardly hope
to discover the H,; when no one even knows what the base states are!) We do have
excellent approximations for nonrelativistic phenomena and for some other special
cases. In particular, we have the forms that are needed for the motions of electrons
in atoms—to describe chemistry. But we don’t know the full true H for the
whole universe.

The coefficients H;; are called the Hamiltonian matrix or, for short, just the
Hamiltonian. (How Hamilton, who worked in the 1830’s, got his name on a
quantum mechanical matrix is a tale of history.) It would be much better called
the energy matrix, for reasons that will become apparent as we work with it. So
the problem is: Know your Hamiltonian!

The Hamiltonian has one property that can be deduced right away, namely,
that

H}; = Hj,. (8.40)

This follows from the condition that the total probability that the system is in
some state does not change. If you start with a particle—an object or the world—
then you’ve still got it as time goes on. The total probability of finding it somewhere

1S
X o),

which must not vary with time. If this is to be true for any starting condition ¢,
then Eq. (8.40) must also be true.
As our first example, we take a situation in which the physical circumstances
are not changing with time; we mean the external physical conditions, so that H
is independent of time. Nobody is turning magnets on and off. We also pick a
system for which only one base state is required for the description; it is an ap-
proximation we could make for a hydrogen atom at rest, or something similar.
Equation (8.39) then says
246

T = H,C,. ( 8.41)

Only one equation—that’s all! And if H,, is constant, this differential equation
is easily solved to give _
C, = (const)e™ M H ¢t (8.42)
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This is the time dependence of a state with a definite energy £ = Hy,. You see
why H,; ought to be called the energy matrix. It is the generalization of the energy
for more complex situations.

Next, to understand a little more about what the equations mean, we look
at a system which has two base states. Then Eq. (8.39) reads

., dC
lhd—tl = H,,Cy + H12C,
(8.43)
., dC
L ‘372 = HyCy + HjCo.

If the H’s are again independent of time, you can easily solve these equations.
We leave you to try for fun, and we’ll come back and do them later. Yes, you can
solve the quantum mechanics without knowing the H’s, so long as they are in-
dependent of time.

8-6 The ammonia molecule

We want now to show you how the dynamical equation of quantum mechanics
can be used to describe a particular physical circumstance. We have picked an
interesting but simple example in which, by making some reasonable guesses about
the Hamiltonian, we can work out some important—and even practical—results.
We are going to take a situation describable by two states: the ammonia molecule.

The ammonia molecule has one nitrogen atom and three hydrogen atoms
located in a plane below the nitrogen so that the molecule has the form of a pyramid,
as drawn in Fig. 8-1(a). Now this molecule, like any other, has an infinite number
of states. It can spin around any possible axis; it can be moving in any direction:
it can be vibrating inside, and so on, and so on. It is, therefore, not a two-state
system at all. But we want to make an approximation that all other states remain
fixed, because they don’t enter into what we are concerned with at the moment.
We will consider only that the molecule is spinning around its axis of symmetry
(as shown in the figure), that it has zero translational momentum, and that it is
vibrating as little as possible. That specifies all conditions except one: there are still
the two possible positions for the nitrogen atom—the nitrogen may be on one side
of the plane of hydrogen atoms or on the other, as shown in Fig. 8-1(a) and (b).
So we will discuss the molecule as though it were a two-state system. We mean
that there are only two states we are going to really worry about, all other things
being assumed to stay put. You see, even if we know that it is spinning with a
certain angular momentum around the axis and that it is moving with a certain
momentum and vibrating in a definite way, there are still two possible states. We
will say that the molecule is in the state | /) when the nitrogen is “up,” as in
Fig. 8-1(a), and is in the state | 2) when the nitrogen is “down,” as in (b). The states
| 1) and | 2) will be taken as the set of base states for our analysis of the behavior
of the ammonia molecule. At any moment, the actual state | ) of the molecule
can be represented by giving C; = (I | ¢), the amplitude to be in state | /), and
C, = (2]¢), the amplitude to be in state | 2). Then, using Eq. (8.8) we can
write the state vector | ¢) as

[v) = [ DT ¥ + [ 22|

|¥) = | DCy + | 2)Co. (8.44)

or

Now the interesting thing is that if the molecule is known to be in some state
at some instant, it will nor be in the same state a little while later. The two
C-coefficients will be changing with time according to the equations (8.43)—which
hold for any two-state system. Suppose, for example, that you had made some
observation—or had made some selection of the molecules—so that you know
that the molecule is initially in the state | I). At some later time, there is some
chance that it will be found in state | 2). To find out what this chance is, we have
to solve the differential equation which tells us how the amplitudes change with time.

8-11

(a)

| 2>

SR

Fig. 8~1. Two equivalent geometric
arrangements of the ammonia molecule.



The only trouble is that we don’t know what to use for the coefficients H;; in
Eq. (8.43). There are some things we can say, however. Suppose that once the
molecule was in the state | /) there was no chance that it could ever get into
| 2), and vice versa. Then H;, and H,, would both be zero, and Eq. (8.43)
would read

., dC ., dC
lh-d—tl = H11C1, lhjdt—z = H22C2.
We can easily solve these two equations; we get
C, = (const)e™“MHut  C, = (const)e™/MHat, (8.45)

These are just the amplitudes for stationary states with the energies E; = Hyy
and E; = Hs,. We note, however, that for the ammonia molecule the two states
| 7) and | 2) have a definite symmetry. If nature is at all reasonable, the matrix
elements Hy; and Hs, must be equal. We’ll call them both E,, because they
correspond to the energy the states would have if Hy, and H,, were zero. But
Eqgs. (8.45) do not tell us what ammonia really does. It turns out that it is possible
for the nitrogen to push its way through the three hydrogens and flip to the other
side. Tt is quite difficult; to get half-way through requires a lot of energy. How
can it get through if it hasn’t got enough energy? There is some amplitude that it
will penetrate the energy barrier. It is possible in quantum mechanics to sneak
quickly across a region which is illegal energetically. There is, therefore, some
small amplitude that a molecule which starts in | 7) will get to the state | 2). The
coefficients H, and H,, are not really zero. Again, by symmetry, they should
both be the same—at least in magnitude. In fact, we already know that, in general,
H;; must be equal to the complex conjugate of Hj;, so they can differ only by a
phase. It turns out, as you will see, that there is no loss of generality if we take
them equal to each other. For later convenience we set them equal to a negative

number; we take Hyo = Hy; = —A. We then have the following pair of
equations:
in 961 EqCy — ACs, (8.46)
dt
i 51% — EoCs — AC,. (8.47)

These equations are simple enough and can be solved in any number of ways.
One convenient way is the following. Taking the sum of the two, we get

(Ey — A)NCy + Co),

., d
ih pr (Cy + Cy)
whose solution is
Cl + C2 — ae—(i/ﬁ)(lfo"A)‘_ (848)

Then, taking the difference of (8.46) and (8.47), we find that

Il

L d
if 4 (C1 — C) (Eo + A)Cy — Cy),
which gives
C;— Cy = be_(i/ﬁ)(Eo+A)t_ (849)

We have called the two integration constants a and b; they are, of course, to be
chosen to give the appropriate starting condition for any particular physical
problem. Now, by adding and subtracting (8.48) and (8.49), we get C; and Cs,:

Cl(l) — %e—('i/ﬁ)(Eo—A)’ + ge——(i/ﬁ)(lfo-i—xi)t, (850)
Colt) = %e—a/mwo—mr _ b —amaorar 8.51)

They are the same except for the sign of the second term.
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We have the solutions; now what do they mean? (The trouble with quantum
mechanics is not only in solving the equations but in understanding what the
solutions mean!) First, notice that if & = 0, both terms have the same frequency
w = (E; — A)/h. If everything changes at one frequency, it means that the system
is in a state of definite energy—here, the energy (Ey, — A). So there is a stationary
state of this energy in which the two amplitudes C; and C, are equal. We get the
result that the ammonia molecule has a definite energy (Eq — A) if there are equal
amplitudes for the nitrogen atom to be “up” and to be “down.”

There is another stationary state possible if @ = 0; both amplitudes then have
the frequency (Eo 4+ A)/fi. So there is another state with the definite energy
(Ey + A)if the two amplitudes are equal but with the opposite sign; Co = —C.
These are the only two states of definite energy. We will discuss the states of the
ammonia molecule in more detail in the next chapter; we will mention here only a
couple of things.

We conclude that because there is some chance that the nitrogen atom can
flip from one position to the other, the energy of the molecule is not just Eq, as we
would have expected, but that there are two energy levels (E, + A4) and (Eq — A4).
Every one of the possible states of the molecule, whatever energy it has, is “split”
into two levels. We say every one of the states because, you remember, we picked
out one particular state of rotation, and internal energy, and so on. For each
possible condition of that kind there is a doublet of energy levels because of the
flip-flop of the molecule.

Let’s now ask the following question about an ammonia molecule. Suppose
that at t = 0, we know that a molecule is in the state | 7) or, in other words, that
C(0) = 1and C5(0) = 0. What is the probability that the molecule will be found
in the state | 2) at the time ¢, or will still be found in state | /) at the time ¢? Our
starting condition tells us what a and b are in Egs. (8.50) and (8.51). Letting
t = 0, we have that

a4+ b a—b>b

C(0) = > =1, Cy(0) = 5 = 0.

Clearly, a = b = 1. Putting these values into the formulas for C(#) and Cy(?)
and rearranging some terms, we have

Ry At —(iIFYA L
Cy(t) = e~ CiIMPEot (e“/ AL L =) >
1 N 3

2
, (imAL _—(iAt
Calr) = & (iIME! (C _ )
We can rewrite these as
Ci(t) = e~ Mo’ cos -’;L-’, (8.52)
Cy(t) = ie~ M Eolgin /;Tt (8.53)

The two amplitudes have a magnitude that varies harmonically with time.
The probability that the molecule is found in state | 2) at the time ¢ is the
absolute square of Cq(2):

|Co()|? = sin® %f . (8.54)
The probability starts at zero (as it should), rises to one, and then oscillates back and
forth between zero and one, as shown in the curve marked P, of Fig. 8-2. The
probability of being in the | 7) state does not, of course, stay at one. It “dumps”
into the second state until the probability of finding the molecule in the first state
is zero, as shown by the curve Py of Fig. 8-2. The probability sloshes back and
forth between the two.
A long time ago we saw what happens when we have two equal pendulums
with a slight coupling. (See Chapter 49, Vol. I.) When we lift one back and let go,
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Fig. 8-2.

probability P, that it will be found in

state ' 2).

The probability P, that
an ammonia molecule in state |1) at
t = O will be found in state |1) att. The (

units of LHA—)

it swings, but then gradually the other one starts to swing. Pretty soon the second
pendulum has picked up all the energy. Then, the process reverses, and pendulum
number one picks up the energy. It is exactly the same kind of a thing. The speed
at which the energy is swapped back and forth depends on the coupling between
the two pendulums—the rate at which the “oscillation” is able to leak across.
Also, you remember, with the two pendulums there are two special motions—each
with a definite frequency—which we call the fundamental modes. If we pull both
pendulums out together, they swing together at one frequency. On the other hand,
if we pull one out one way and the other out the other way, there is another sta-
tionary mode also at a definite frequency.

Well, here we have a similar situation—the ammonia molecule is mathe-
matically like the pair of pendulums. These are the two frequencies—(E, + A)/A
and (Ey — A)/h—for when they are oscillating together, or oscillating opposite.

The pendulum analogy is not much deeper than the principle that the same
equations have the same solutions. The linear equations for the amplitudes (8.39)
are very much like the linear equations of harmonic oscillators. (In fact, this is
the reason behind the success of our classical theory of the index of refraction, in
which we replaced the quantum mechanical atom by a harmonic oscillator, even
though, classically, this is not a reasonable view of electrons circulating about a
nucleus.) If you pull the nitrogen to one side, then you get a superposition of
these two frequencies, and you get a kind of bear note, because the system is not
in one or the other states of definite frequency. The splitting of the energy levels
of the ammonia molecule is, however, strictly a quantum mechanical effect.

The splitting of the energy levels of the ammonia molecule has important
practical applications which we will describe in the next chapter. At long last we
have an example of a practical physical problem that you can understand with the
quantum mechanics!



9

The Ammonia Maser

9-1 The states of an ammonia molecule

In this chapter we are going to discuss the application of quantum mechanics
to a practical device. the ammonia maser. You may wonder why we stop our
formal development of quantum mechanics to do a special problem, but you will
find that many of the features of this special problem are quite common in the
general theory of quantum mechanics, and you will learn a great deal by considering
this one problem in detail. The ammonia maser is a device for generating electro-
magnetic waves, whose operation is based on the properties of the ammonia
molecule which we discussed briefly in the last chapter. We begin by summarizing
what we found there.

The ammonia molecule has many states, but we are considering it as a two-
state system, thinking now only about what happens when the molecule is in any
specific state of rotation or translation. A physical model for the two states can
be visualized as follows. If the ammonia molecule is considered to be rotating
about an axis passing through the nitrogen atom and perpendicular to the plane
of the hydrogen atoms, as shown in Fig. 9-1, there are still two possible conditions
—the nitrogen may be on one side of the plane of hydrogen atoms or on the other.
We call these two states | /) and | 2). They are taken as a set of base states for our
analysis of the behavior of the ammonia molecule.

Dipole
Moment

9-1 The states of an ammonia
molecule

9-2 The molecule in a static
electric field

9-3 Transitions in a time-dependent
field

9-4 Transitions at resonance
9-5 Transitions off resonance

9-6 The absorption of light

MASER = Microwave Amplification
by Stimulated Emission of Radiation

Fig. 9-1. A physical model of two
base states for the ammonia molecule.
These states have the electric dipole

| |> |2> moments .

In a system with two base states, any state |y) of the system can always
be described as a linear combination of the two base states; that is, there is a
certain amplitude C; to be in one base state and an amplitude C, to be in the
other. We can write its state vector as

() = [ 1)Cy + | 2)C, .1
where
Cy={[¢) and Cy,= 2|y).

These two amplitudes change with time according to the Hamiltonian equa-
tions, Eq. (8.43). Making use of the symmetry of the two states of the ammonia
molecule, we set Hy, = Hyy = Eo, and H,5 = Hy; = —A, and get the
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solution [see Eqs. (8.50) and (8.51)]

i - b _
Cl - e (2/R)(Eo—A)L + ie (’L/ﬁ)(Eo—}—A)t’ (92)

a
2

Cy, = ;e—(i/ﬁ)(EO‘-—A)t _ ée—(i/ﬂ)(Eoﬁ‘A)l‘ 9.3)

We want now to take a closer look at these general solutions. Suppose that
the molecule was initially put into a state | ;) for which the coefficient b was equal
to zero. Then at ¢ = 0 the amplitudes (o be in the states | 7) and | 2) are identical,
and they stay that way for all time. Their phases both vary with time in the same
way—with the frequency (£ — A)/%. Similarly, if we were to put the molecule
into a state | ) for which a = 0, the amplitude Cs is the negative of Cy, and this
relationship would stay that way forever. Both amplitudes would now vary with
time with the frequency (Eo + A)/h. These are the only two possibilities of states
for which the relation between C; and C, is independent of time.

We have found two special solutions in which the two amplitudes do not vary
in magnitude and, furthermore, have phases which vary at the same frequencies.
These are stationary states as we defined them in Section 7-1, which means that
they are states of definite energy. The state | ;1) has the energy E;r = Ey — A,
and the state | ¢,) has the energy E; = Eq + A. They are the only two stationary
states that exist, so we find that the molecule has two energy levels, with the energy
difference 24. (We mean, of course, two energy levels for the assumed state of
rotation and vibration which we referred to in our initial assumptions.)}

If we hadn’t allowed for the possibility of the nitrogen flipping back and forth,
we would have taken A equal to zero and the two energy levels would be on top of
each other at energy E,. The actual levels are not this way; their average energy
is Ey, but they are split apart by = A4, giving a separation of 24 between the energies
of the two states. Since A is, in fact, very small, the difference in energy is also
very small.

In order to excite an electron inside an atom, the energies involved are rela-
tively very high—requiring photons in the optical or ultraviolet range. To excite
the vibrations of the molecules involves photons in the infrared. If you talk about
exciting rofations, the energy differences of the states correspond to photons in
the far infrared. But the energy difference 24 is lower than any of those and is, in
fact, below the infrared and well into the microwave region. Experimentally, it
has been found that there is a pair of energy levels with a separation of 10™*
electron volt—corresponding to a frequency 24,000 megacycles. Evidently this
means that 24 = #f, with f = 24,000 megacycles (corresponding to a wavelength
of 17 cm). So here we have a molecule that has a transition which does not emit
light in the ordinary sense, but emits microwaves.

For the work that follows we need to describe these two states of definite
energy a little bit better. Suppose we were to construct an amplitude C;; by taking
the sum of the two numbers C; and Cs:

Crr=Ci+ Cy = (1[®) + (2| ®). 049

What would that mean? Well, this is just the amplitude to find the state | ®) in a
new state | /7) in which the amplitudes of the original base states are equal. That
is, writing Cr; = (Il] ®), we can abstract the ; &) away from Eq. (9.4)—because
it is true for any ®—and get

ar) = 4+ @i,
which means the same as

|y = | 1)+ |2). ©.5)

+ In what follows it is helpful—in reading to yourself or in talking to someone else—to
have a handy way of distinguishing between the Arabic 1 and 2 and the Roman 1 and 1I.
We find it convenient to reserve the names “one’ and “two” for the Arabic numbers, and
to call T and 1I by the names ‘“‘eins” and “zwei”’ (although ‘“‘unus” and *“‘duo” might be
more logical!).
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The amplitude for the state | II) to be in the state | ) is
g =1+ {]2),

which is, of course, just 1, since | /) and | 2) are base states. The amplitude for
the state | 77) to be in the state | 2) is also 1, so the state | J7) is one which has equal
amplitudes to be in the two base states | 7) and | 2).

We are, however, in a bit of trouble. The state | /]) has a total probability
greater than one of being in some base state or other. That simply means, however,
that the state vector is not properly “normalized.” We can take care of that by
remembering that we should have (I | II) = 1, which must be so for any state.
Using the general relation that

X8 = 3 (x| il ),

letting both ® and x be the state /I, and taking the sum over the base states | /)
and | 2), we get that

ATV = AT DA + ] 22 | 1.

This will be equal to one as it should if we change our definition of Cy;—in Eq.
(9.4)y—to read
1
Crr = % [Cy + Col
In the same way we can construct an amplitude
1
Cr = V2 [C: — G,
or
1
Cr=—[UI|®) — 2] 9.6
= )

This amplitude is the projection of the state | ) into a new state | I) which has
opposite amplitudes to be in the states | 7) and | 2). Namely, Eq. (9.6) means

the same as
1

{I| = 7§[<1| -1
or
_ L _
1) = \/i[l 1)y — [2)], .7
from which it follows that
_ 1 _ )
qn = Vi 2|n

Now the reason we have done all this is that the states | I) and | IT) can be
taken as a new set of base states which are especially convenient for describing the
stationary states of the ammonia molecule. You remember that the requirement
for a set of base states is that

(ij) = 8.
We have already fixed things so that
J\n == 1.
You can easily show from Egs. (9.5) and (9.7) that
a|my =4I = o.

The amplitudes C; = (/| ®) and C;r = (Il | ®) for any state & to be in our
new base states | /) and | /I) must also satisfy a Hamiltonian equation with the
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form of Eq. (8.39). In fact, if we just subtract the two equations (9.2) and (9.3)
and differentiate with respect to #, we see that

ih 9’% = (Ey + A)C; = E(Cy. 9.8)
And taking the sum of Egs. (9.2) and (9.3), we see that

dCII _
dt

it (Ey — A)Cr1r = EnCyy. (9.9)

Using | I) and | II) for base states, the Hamiltonian matrix has the simple form

H;; = Ep, Hrr =0,
Hr =0, Hrrr = Eqg.

Note that each of the Egs. (9.8) and (9.9) look just like what we had in Section
8-6 for the equation of a one-state system. They have a simple exponential time
dependence corresponding to a single energy. As time goes on, the amplitudes to
be in each state act independently.

The two stationary states |y;) and |¢;7) we found above are, of course,
solutions of Egs. (9.8) and (9.9). The state |y¥7) (for which C; = —C;) has

C; = e (IME+DL Ci = 0. (9.10)
And the state | y77) (for which C; = C,) has
Cr =0, Crp = e WR(E—A)t ©.11)
Remember that the amplitudes in Eq. (9.10) are
Cr=(|y1), and  Ci = {[{1);
so Eq. (9.10) means the same thing as
[g1) = | 1) et o+t

That is, the state vector of the stationary state | ;) is the same as the state vector
of the base state | I) except for the exponential factor appropriate to the energy of
the state. Infactatt = 0

lyr) = | D);

the state | 7) has the same physical configuration as the stationary state of energy
Ey + A. In the same way, we have for the second stationary state that

| sy = | II) e~ (P Eo=a)e,

The state | I7) is just the stationary state of energy Eo — A at + = 0. Thus our
two new base states | ) and | IT) have physically the form of the states of definite
energy, with the exponential time factor taken out so that they can be time-
independent base states. (In what follows we will find it convenient not to have
to distinguish always between the stationary states | ;) and | ;) and their base
states | I) and | IT), since they differ only by the obvious time factors.)

In summary, the state vectors | /) and | I]) are a pair of base vectors which
are appropriate for describing the definite energy states of the ammonia molecule.
They are related to our original base vectors by

1 1
I=—|[1) —12)] m=—I1 4+ |2)] 9.12
| T) \/§[| ) = 12)] | 11) \/§[| )+ 12 (%.12)
The amplitudes to be in | I) and | II) are related to C; and C, by
1 1
Cr = v (€1 = C)  Ci= ; [Ci + Col ©.13)



Any state at all can be represented by a linear combination of | I) and | 2)—with
the coefficients C; and Cy—or by a linear combination of the definite energy base
states | /) and | II)—with the coefficients C; and C;;. Thus,

[®) = |I)C1 + | 2)C,

or

|®) = | I)C; + | II)Cyr.
The second form gives us the amplitudes for finding the state | ®) in a state with
the energy E; = Ey + A or in a state with the energy E;; = Eo — A.

9-2 The molecule in a static electric field

If the ammonia molecule is in either of the two states of definite energy and we
disturb it at a frequency w such that fiw = E; — Ej; = 2A, the system may make
a transition from one state to the other. Or, if it is in the upper state, it may change
to the lower state and emit a photon. But in order to induce such transitions you
must have a physical connection to the states—some way of disturbing the system.
There must be some external machinery for affecting the states, such as magnetic
or electric fields. In this particular case, these states are sensitive to an electric
field. We will, therefore, look next at the problem of the behavior of the ammonia
molecule in an external electric field.

To discuss the behavior in an electric field, we will go back to the original
base system | /) and | 2), rather than using | /) and | II). Suppose that there is an
electric field in a direction perpendicular to the plane of the hydrogen atoms.
Disregarding for the moment the possibility of flipping back and forth, would it be
true that the energy of this molecule is the same for the two positions of the nitrogen
atom? Generally, no. The electrons tend to lie closer to the nitrogen than to the
hydrogen nuclei, so the hydrogens are slightly positive. The actual amount
depends on the details of electron distribution. It is a complicated problem to
figure out exactly what this distribution is, but in any case the net result is that the
ammonia molecule has an electric dipole moment, as indicated in Fig. 9-1. We
can continue our analysis without knowing in detail the direction or amount of
displacement of the charge. However, to be consistent with the notation of others,
let’s suppose that the electric dipole moment is u, with its direction point from
the nitrogen atom and perpendicular to the plane of the hydrogen atoms.

Now, when the nitrogen flips from one side to the other, the center of mass
will not move, but the electric dipole moment will flip over. As a result of this
moment, the energy in an electric field & will depend on the molecular orientation.}
With the assumption made above, the potential energy will be higher if the nitrogen
atom points in the direction of the field, and lower if it is in the opposite direction;
the separation in the two energies will be 2ué&.

In the discussion up to this point, we have assumed values of E, and 4 without
knowing how to calculate them. According to the correct physical theory, it
should be possible to calculate these constants in terms of the positions and
motions of all the nuclei and electrons. But nobody has ever done it. Such a
system involves ten electrons and four nuclei and that’s just too complicated a
problem. As a matter'of fact, there is no one who knows much more about this
molecule than we do. All anyone can say is that when there is an electric field,
the energy of the two states is different, the difference being proportional to the
electric field. We have called the coefficient of proportionality 2u, but its value
must be determined experimentally. We can also say that the molecule has the
amplitude 4 to flip over, but this will have to be measured experimentally. Nobody
can give us accurate theoretical values of u and A, because the calculations are
too complicated to do in detail.

1 We are sorry that we have to introduce a new notation. Since we have been using
p and E for momentum and energy, we don’t want Lo use them again for dipole moment
and electric field. Remember, in this section u is the electric dipole moment.
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For the ammonia molecule in an electric field, our description must be
changed. If we ignored the amplitude for the molecule to flip from one configura-
tion to the other, we would expect the energies of the two states | /) and | 2) to be
(Eo = u&). Following the procedure of the last chapter, we take

Hyy = Eg + u8,  Hyp = E¢g — pé. (%.14)

Also we will assume that for the electric fields of interest the field does not affect
appreciably the geometry of the molecule and, therefore, does not affect the
amplitude that the nitrogen will jump from one position to the other. We can
then take that Hy, and H,; are not changed; so

le = H21 = —A. (9.15)

We must now solve the Hamiltonian equations, Eq. (8.43), with these new values
of H;;. We could solve them just as we did before, but since we are going to have
several occasions to want the solutions for two-state systems, let’s solve the equa-
tions once and for all in the general case of arbitrary H,—assuming only that they
do not change with time.

We want the general solution of the pair of Hamiltonian equations

., dC
I Ttl = H1Cy 4+ Hy1C,, (9.16)
i %Z = HyCy + Hy5Cs. 9.17)

Since these are linear differential equations with constant coefficients, we can always
find solutions which are exponential functions of the dependent variable 1. We
will first look for a solution in which C; and C, both have the same time depen-
dence; we can use the trial functions

C1 = ale_“‘", Cz = aze_“”.

Since such a solution corresponds to a state of energy E = fiw, we may as well write
right away
Cy = ae”ME (9.18)

Cy = aze™ ML (.19

where E is as yet unknown and to be determined so that the differential equations
(9.16) and (9.17) are satisfied.

When we substitute C; and C, from (9.18) and (9.19) in the differential
equations (9.16) and (9.17), the derivatives give us just —iE/A times C or Co,
so the left sides become just EC; and EC,. Cancelling the common exponential
factors, we get

Ea, = Hya, + Hysas, Eas = Hyiay + Hsaao.
Or, rearranging the terms, we have
(E — Hypay — Hyzay = 0, (9.20)
—Hjza; + (E — Hyg)ay = 0. (9.21)

With such a set of homogeneous algebraic equations, there will be nonzero solu-
tions for a; and a only if the determinant of the coefficients of a, and a is zero,

that is, if
E-H ~H
Det H 1= o 9.22)
- H21 E — H22
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However, when there are only two equations and two unknowns, we don’t
need such a sophisticated idea. The two equations (9.20) and (9.21) each give
a ratio for the two coefficients @y and «,, and these two ratios must be equal.
From (9.20) we have that

ar Hy,

@ E— H. o s (9.23)
and from (9.21) that

ay E — H22

A = 22 9.24

az Hjy, ( )

Equating these two ratios, we get that E must satisfy
(E— Hu)E — Hyp) — HygHyy = 0.

This is the same result we would get by solving Eq. (9.22). Either way, we have
a quadratic equation for E which has two solutions:

E- ELLJZF LI \/(Hn 5 LEE R (9.25)

There are two possible values for the energy E. Note that both solutions give
real numbers for the energy, because Hy; and Ho, are real, and HH,q is equal
to HigHly = |H1s|?, which is both real and positive.

Using the same convention we took before, we will call the upper energy
E; and the lower energy E;;. We have

H H o H — Ht)ﬁ) 2 o
E, = _1H2rh2 + \/(“‘4%)— + HioHyy, (9.26)

EI[ =

H Hsyo Hyy — Hyy)?
11 -; 22 J( 11 4 22) + H12H21. (9-27)

Using each of these two energies separately in Egs. (9.18) and (9.19), we have
the amplitudes for the two stationary states (the states of definite energy). If there
are no external disturbances, a system initially in one of these states will stay that
way forever—only its phase changes.

We can check our results for two special cases. If H;, = Hyq = 0, we have
that £ = Hyy and E;; = Hye. This is certainly correct, because then Eqgs.
(9.16) and (9.17) are uncoupled, and each represents a state of energy H;, and
Hyy. Next, if we set Hyy = Hyp = Eg and Hyy = H;, = —A, we get the
solution we found before:

Er=Ey+ A4 and E;; = Ey — A

For the general case, the two solutions E; and Ej; refer to two states—which
we can again call the states

I¢1> — l])e—('i/ﬁ)Elt and |¢II> — |1]>e—(i/ﬁ)EI]t.

These states will have Cy and C, as given in Eqgs. (9.18) and (9.19), where a;
and a» are still to be determined. Their ratio is given by either Eq. (9.23) or
Eq. (9.24). They must also satisfy one more condition. If the system is known to
be in one of the stationary states, the sum of the probabilities that it will be found
in | 7) or | 2) must equal one. We must have that

[C1]? + |Cof? = 1, (9.28)
or, equivalently,
lay[® + las|® = 1. 9.29)

These conditions do not uniquely specify a; and a,; they are still undetermined
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Fig. 9-2. Energy levels of the am-

monia molecule in an electric field.

by an arbitrary phase—in other words, by a factor like ¢®. Although general
solutions for the a’s can be written down,? it is usually more convenient to work
them out for each special case.

Let’s go back now to our particular example of the ammonia molecule in an
electric field. Using the values for Hy,, Hzo, and Hy, given in (9.14) and (9.15),
we get for the energies of the two stationary states

E; = Ey + VA + p?8%,  E;p = Ey — VA® + p2e2. (9.30)

These two energies are plotted as a function of the electric field strength & in Fig.
9-2. When the electric field is zero, the two energies are, of course, just £y = A.
When an electric field is applied, the splitting between the two levels increases.
The splitting increases at first slowly with &, but eventually becomes proportional
to &. (The curve is a hyperbola.) For enormously strong fields, the energies are just

Er = Ey + p& = Hyy, Err = Eg — pé = Hy,. (9.31)

The fact that there is an amplitude for the nitrogen to flip back and forth has little
effect when the two positions have very different energies. This is an interesting point
which we will come back to again later.

We are at last ready to understand the operation of the ammonia maser.
The idea is the following. First, we find a way of separating molecules in the
state | 1) from those in the state | I7).1 Then the molecules in the higher energy state
| I) are passed through a cavity which has a resonant frequency of 24,000 mega-
cycles. The molecules can deliver energy to the cavity—in a way we will discuss
later—and leave the cavity in the state | I7). Each molecule that makes such a
transition will deliver the energy E = E; — Ej; to the cavity. The energy from
the molecules will appear as electrical energy in the cavity.

How can we separate the two molecular states? One method is as follows.
The ammonia gas is let out of a little jet and passed through a pair of slits to
give a narrow beam, as shown in Fig. 9-3. The beam is then set through a

+ For example, the following set is one acceptable solution, as you can easily verify:

_ Hie . s E— Hi o
[(E — Hin? + HizH2'?

a = _ .
! [(E — H1)? + HioHoi]'?

1 From now on we will write |I) and |/I) instead of |¢7) and |y;r). You must remember
that the actual states |¢7) and |y;r) are the energy base states multiplied by the appro-
priate exponential factor.
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region in which there is a large transverse electric field. The electrodes to produce
the field are shaped so that the electric field varies rapidly across the beam. Then
the square of the electric field & - & will have a large gradient perpendicular to the
beam. Now a molecule in state | I) has an energy which increases with &2, and
therefore this part of the beam will be deflected toward the region of lower &2.
A molecule in state | I7) will, on the other hand, be deflected toward the region
of larger &2, since its energy decreases as &2 increases.

Incidentally, with the electric fields which can be generated in the laboratory,
the energy u& is always much smaller than 4. In such cases, the square root in
Egs. (9.30) can be approximated by

1 u2g?
A\l + 3 47 )° (9.32)
So the energy levels are, for all practical purposes,
4282
E;=E,+ 4+ 54 (9.33)
and
u26?
Erp=Ey,— A4 — R (9.34)

And the energies vary approximately linearly with 2. The force on the molecules
is then
I»t2 2

F = 37 V&~ (9.35)
Many molecules have an energy in an electric field which is proportional to &2.
The coefficient is the polarizability of the molecule. Ammonia has an unusually
high polarizability because of the small value of 4 in the denominator. Thus,
ammonia molecules are unusually sensitive to an electric field. (What would you
expect for the dielectric coefficient of NH 4 gas?)

MASER CAVITY
FREQUENCY wj,

9-3 Transitions in a time-dependent field

In the ammonia maser, the beam with molecules in the state | /) and with the
energy Ej is sent through a resonant cavity, as shown in Fig. 9-4. The other beam
is discarded. Inside the cavity, there will be a time-varying electric field, so the
next problem we must discuss is the behavior of a molecule in an electric field that
varies with time. We have a completely different kind of a problem—one with a
time-varying Hamiltonian. Since H,; depends upon &, the H,; vary with time, and
we must determine the behavior of the system in this circumstance.

To begin with, we write down the equations to be solved:

., dC
i 7,1 = (Eo + u&)Cy — AC,,
(9.36)
, dC
1 7[2 = "ACI + (EO — Hg)CZ
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Fig. 9-3. The ammonia beam may
be separated by an electric field in
which &2 has a gradient perpendicular to
the beam.
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To be definite, let’s suppose that the electric field varies sinusoidally; then we can
write . ’
§ = 28pcos wt = &y(e™! + e~ Y, .37

In actual operation the frequency w will be very nearly equal to the resonant fre-
quency of the molecular transition wy = 24/%, but for the time being we want
to keep things general, so we’ll let it have any value at all. The best way to solve
our equations is to form linear combinations of C, and C, as we did before. So
we add the two equations, divide by the square root of 2, and use the definitions
of Cr and Cy; that we had in Eq. (9.13). We get

i "St” — (Ey — AYCir + ueCy. (9.38)

You’ll note that this is the same as Eq. (9.9) with an extra term due to the electric
field. Similarly, if we subtract the two equations (9.36), we get

., dC
i TzI = (Ey + A)C; + usCyy. (9.39)

Now the question is, how to solve these equations? They are more difficult
than our earlier set, because & depends on ¢; and, in fact, for a general &(7) the
solution is not expressible in elementary functions. However, we can get a good

approximation so long as the electric field is small. First we will write

Cr = Ve~ "Bt Dth — vy o—iEDiA

(9.40)

—i(Bg—A ik _ — (B pelh

Crr = 7y1e Yrre
If there were no electric field, these solutions would be correct with ¥; and 7v;;
Jjust chosen as two complex constants. In fact, since the probability of being in
state | I) is the absolute square of C; and the probability of being in state | /1) is the
absolute square of Cj;, the probability of being in state | I) or in state | I1) is
just [v7|? or |v7|%. For instance, if the system were to start originally in state | I/)
so that v; was zero and |v;;|? was one, this condition would go on forever. There
would be no chance, if the molecule were originally in state | II), ever to get
into state | I).

Now the idea of writing our equations in the form of Eq. (9.40) is that if
1 is small in comparison with A, the solutions can still be written in this way, but
then vr and v;; become slowly varying functions of time—where by “slowly
varying” we mean slowly in comparison with the exponential functions. That is
the trick. We use the fact that ¥; and v;; vary slowly to get an approximate
solution.

We want now to substitute Cy from (9.40) in the differential equation (9.39),
but we must remember that v; is also a function of 7. We have

dCy —iEptih dYr By
L = Epype= it gy 1 =B n
" rie e
The differential equation becomes
(Em + i ‘%’) e WMEI = Ery e MEI 4 gy e CIDEIL, (9.41)

Similarly, the equation in dCr;/dt becomes

L dy iR . PP
(Emn + ik —df> e MEI o Eppyp e MEIE L ey e B (9.42)

Now you will notice that we have equal terms on both sides of each equation. We
cancel these terms, and we also multiply the first equation by e™*#7%* and the
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second by etifr1¥*  Remembering that (E; — Er;) = 24 = #wy, we have
finally,
ih dT;tI“ = p&(ne vy,
(9.43)
. d'YI]

Mg(t)e—wot')’].

dt

Now we have an apparently simple pair of equations—and they are still exact,
of course. The derivative of one variable is a function of time u&(f)e®s?, multiplied
by the second variable; the derivative of the second is a similar time function,
multiplied by the first. Although these simple equations cannot be solved in general,
we will solve them for some special cases.

We are, for the moment at least, interested only in the case of an oscillating
electric field. Taking &(7) as given in Eq. (9.37), we find that the equations for
v¥r and Yy become

Y : e
. % - #go[ez(w+wo)t+ e #{w wo)t]’)’]},
(9.44)
. Y (0o .
,h‘% = pBfe @0t 4 g te ]y

Now if &, is sufficiently small, the rates of change of ¥; and v;; are also small.
The two 7’s will not vary much with ¢, especially in comparison with the rapid
variations due to the exponential terms. These exponential terms have real and
imaginary parts that oscillate at the frequency w + wo or w — wyp. The terms with
w 4 wy oscillate very rapidly about an average value of zero and, therefore, do not
contribute very much on the average to the rate of change of ¥. So we can make a
reasonably good approximation by replacing these terms by their average value,
namely, zero. We will just leave them out, and take as our approximation:

., dY (e
tI Soe (W wg)t,yII
. d’YII Ww—wg) i
it £ S Ys.
7 u&oe I

Even the remaining terms, with exponents proportional to (w — wg), will also
vary rapidly unless w is near wg. Only then will the right-hand side vary slowly
enough that any appreciable amount will accumulate when we integrate the
equations with respect to 7. In other words, with a weak electric field the only
significant frequencies are those near wg.

With the approximation made in getting Eq. (9.45), the equations can be
solved exactly, but the work is a little elaborate, so we won’t do that until later when
we take up another problem of the same type. Now we’ll just solve them ap-
proximately—or rather, we’ll find an exact solution for the case of perfect reso-
nance, w = wg, and an approximate solution for frequencies near resonance.

9-4 Transitions at resonance

Let’s take the case of perfect resonance first. If we take w = wy, the expo-
nentials are equal to one in both equations of (9.45), and we have just

dvr _ iubg dvrr N iu&o

2 el s S " (©.46)
If we eliminate first v; and then v;; from these equations, we find that each satisfies
the differential equation of simple harmonic motion:

d27 _ ,U.S())Z
= (T Y. 9.47)

The general solutions for these equations can be made up of sines and cosines.
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Fig. 9-5. Probabilities for the two
states of the ammonia molecule in a

sinusoidal electric field.

As you can easily verify, the following equations are a solution:
acos (“780> t + bsin (%80> 1,

b cos (#50) 1 — iasin (“5
zbcos<h>t zasm(h>1,

where @ and b are constants to be determined to fit any particular physical situation.

For instance, suppose that at # = 0 our molecular system was in the upper
energy state | I), which would require—from Eq. (9.40)—thatv, = landv;; = 0
at t — 0. For this situation we would need @ = 1 and b = 0. The probability
that the molecule is in the state | I) at some later 7 is the absolute square of vy, or

Tr

I¥

(9.48)

Yrr

Pr = [v1]? = cos? <E-§—°> ‘. (9.49)

Similarly, the probability that the molecule will be in the state | I1) is given by the
absolute square of sy,

Py = v = sin? (@) ‘. (9.50)

So long as & is small and we are on resonance, the probabilities are given by simple
oscillating functions. The probability to be in state | /) falls from one to zero and
back again, while the probability to be in the state | Iy rises from zero to one and
back. The time variation of the two probabilities is shown in Fig. 9-5. Needless
to say, the sum of the two probabilities is always equal to one; the molecule is
always in some state!

P
I

tinunits of mh/2u&,

Let’s suppose that it takes the molecule the time T to go through the cavity.
If we make the cavity just long enough so that u&¢T/h = 7/2, then a molecule
which enters in state | I) will certainly leave it in state | I7). If it enters the cavity
in the upper state, it will leave the cavity in the lower state. In other words, its
energy is decreased, and the loss of energy can’t go anywhere else but into the
machinery which generates the field. The details by which you can see how the
energy of the molecule is fed into the oscillations of the cavity are not simple;
however, we don’t need to study these details, because we can use the principle
of conservation of energy. (We could study them if we had to, but then we would
have to deal with the quantum mechanics of the field in the cavity in addition to
the quantum mechanics of the atom.)

In summary: the molecule enters the cavity, the cavity field—oscillating at
exactly the right frequency—induces transitions from the upper to the lower state,
and the energy released is fed into the oscillating field. In an operating maser
the molecules deliver enough energy to maintain the cavity oscillations—not only
providing enough power to make up for the cavity losses but even providing small
amounts of excess power that can be drawn from the cavity. Thus, the molecular
energy is converted into the energy of an external electromagnetic field.
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Remember that before the beam enters the cavity, we have to use a filter
which separates the beam so that only the upper state enters. It is easy to demon-
strate that if you were to start with molecules in the lower state, the process will go
the other way and take energy out of the cavity. If you put the unfiltered beam in,
as many molecules are taking energy out as are putting energy in, so nothing much
would happen. In actual operation it isn’t necessary, of course, to make (u&¢7/%)
exactly 7/2. For any other value (except an exact integral multiple of ), there is
some probability for transitions from state | I) to state | II). For other values,
however, the device isn’t 100 percent efficient; many of the molecules which leave
the cavity could have delivered some energy to the cavity but didn’t.

In actual use, the velocity of all the molecules is not the same; they have some
kind of Maxwell distribution. This means that the ideal periods of time for
different molecules will be different, and it is impossible to get 100 percent efficiency
for all the molecules at once. In addition, there is another complication which is
easy to take into account, but we don’t want to bother with it at this stage. You
remember that the electric field in a cavity usually varies from place to place across
the cavity. Thus, as the molecules drift across the cavity, the electric field at the
molecule varies in a way that is more complicated than the simple sinusoidal
oscillation in time that we have assumed. Clearly, one would have to use a more
complicated integration to do the problem exactly, but the general idea is still the
same.

There are other ways of making masers. Instead of separating the atoms in
state | /) from those in state | /7) by a Stern-Gerlach apparatus, one can have the
atoms already in the cavity (as a gas or a solid) and shift atoms from state | IT)
to state | ) by some means. One way is one used in the so-called three-state maser.
For it, atomic systems are used which have three energy levels, as shown in Fig.
9-6, with the following special properties. The system will absorb radiation
(say, light) of frequency #iw;, and go from the lowest energy level E;; to some
high-energy level E’, and then will quickly emit photons of frequency #ws and go
to the state | /) with energy E;. The state | I) has a long lifetime so its population
can be raised, and the conditions are then appropriate for maser operation between
states | ) and | IT). Although such a device is called a “three-state’ maser, the
maser operation really works just as a two-state system such as we are describing.

A laser (Light Amplification by Stimulated Emission of Radiation) is just a
maser working at optical frequencies. The “cavity” for a laser usually consists of
Jjust two plane mirrors between which standing waves are generated.

9-5 Transitions off resonance

Finally, we would like to find out how the states vary in the circumstance that
the cavity frequency is nearly, but not exactly, equal to w,. We could solve this
problem exactly, but instead of trying to do that, we’ll take the important case
that the electric field is small and also the period of time T is small, so that u&T/%
is much less than one. Then, even in the case of perfect resonance which we have
just worked out, the probability of making a transition is small. Suppose that we
start again with v; = 1 and v;; = 0. During the time T we would expect v, to
remain nearly equal to one, and ¥;; to remain very small compared with unity.
Then the problem is very easy. We can calculate ¥;; from the second equation in
(9.45), taking v equal to one and integrating from ¢ = Otot = T. We get

_ Lilw—wp)
vir = S0 [I_J’___’]. ©.51)

w — Wwoy

This 74, used with Eq. (9.40), gives the amplitude to have made a transition from
the state | I) to the state | I/) during the time interval T. The probability P(I — II)
to make the transition is [v;;|2, or

8T |? sin? [(w — wo)T/2
PA = 1D = 1l = [# ho ] Sm[(cE(w— w;;;)/Z]z]' ©:52)
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It is interesting to plot this probability for a fixed length of time as a function
of the frequency of the cavity in order to see how sensitive it is to frequencies near
the resonant frequency w,. We show such a plot of P(I — IT) in Fig. 9-7. (The
vertical scale has been adjusted to be 1 at the peak by dividing by the value of the
probability when w = w,.) We have seen a curve like this in the diffraction theory,
so you should already be familiar with it. The curve falls rather abruptly to zero
for (w — wo) = 2m/T and never regains significant size for large frequency devia-
tions. In fact, by far the greatest part of the area under the curve lies within the
range = /7. It is possible to showt that the area under the curve is just 27/T and
is equal to the area of the shaded rectangle drawn in the figure.

Let’s examine the implication of our results for a real maser. Suppose that
the ammonia molecule is in the cavity for a reasonable length of time, say for one
millisecond. Then for f, = 24,000 megacycles, we can calculate that the prob-
ability for a transition falls to zero for a frequency deviation of (f — fo)/fo =
1/foT, which is five parts in 10®. Evidently the frequency must be very close to w,
to get a significant transition probability. Such an effect is the basis of the great

precision that can be obtained with “atomic™ clocks. which work on the maser
principle.
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Fig. 9-7. Transition probability for the ammonia Fig. 9-8. The spectral intensity 9{w} can be approx-

molecule as a function of frequency.

imated by its value at wy.

9-6 The absorption of light

Our treatment above applies to a more general situation than the ammonia
maser. We have treated the behavior of a molecule under the influence of an
electric field, whether that field was confined in a cavity or not. So we could be
simply shining a beam of “light”—at microwave frequencies—at the molecule
and ask for the probability of emission or absorption. Our equations apply equally
well to this case, but let’s rewrite them in terms of the intensity of the radiation
rather than the electric field. If we define the intensity g to be the average energy
flow per unit area per second, then from Chapter 27 of Volume II, we can write

g = eoczls X Blave = 3€0c%(& X B)max = 260082

(The maximum value of & is 2&,.) The transition probability now becomes:

_ w | e sin® (@ — w)T/2]
PU > 1) = 27r[47r60h26]‘; ? (@ — o T/2F (9.53)

t Using the formula {*_ (sin? x/x%) dx = .
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Ordinarily the light shining on such a system is not exactly monochromatic.
It is, therefore, interesting to solve one more problem—that is, to calculate the
transition probability when the light has intensity 9(w) per unit frequency interval,
covering a broad range which includes w,. Then, the probability of going from
| I) to | IT) will become an integral:

_ w ] / "o Sint (@ — w)T/2]
P — II) = 2x [mo—m—c T? . 9(w) (o — wo)T)/Z]Z dw.  (9.54)

In general, 9(w) will vary much more slowly with w than the sharp resonance term.
The two functions might appear as shown in Fig. 9-8. In such cases, we can re-
place 9(w) by its value 9(wg) at the center of the sharp resonance curve and take
it outside of the integral. What remains is just the integral under the curve of
Fig. 9-7, which is, as we have seen, just equal to 27w/T. We get the result that

2

P — I = 47?2 [Gg—ohz_c] 9(wo)T. (9.55)

This is an important result, because it is the general theory of the absorption
of light by any molecular or atomic system. Although we began by considering a
case in which state | I) had a higher energy than state | I7), none of our arguments
depended on that fact. Equation (9.55) still holds if the state | I) has a lower
energy than the state | /T); then P(I — II) represents the probability for a transition
with the absorption of energy from the incident electromagnetic wave. The
absorption of light by any atomic system always involves the amplitude for a
transition in an oscillating electric field between two states separated by an
energy E = fiwy. For any particular case, it is always worked out in just the
way we have done here and gives an expression like Eq. (9.55). We, therefore,
emphasize the following features of this result. First, the probability is pro-
portional to 7. In other words, there is a constant probability per unit time
that transitions will occur. Second, this probability is proportional to the intensity
of the light incident on the system. Finally, the transition probability is propor-
tional to u?, where, you remember, u& defined the shift in energy due to the
electric field &. Because of this, u8 also appeared in Eqgs. (9.38) and (9.39) as the
coupling term that is responsible for the transition between the otherwise stationary
states | /) and | II). In other words, for the small & we have been considering,
u& is the so-called “perturbation term” in the Hamiltonian matrix element which
connects the states | /) and |/I). In the general case, we would have that ué
gets replaced by the matrix element (ZI|H|I) (see Section 5-6).

In Volume I (Section 42-5) we talked about the relations among light absorp-
tion, induced emission, and spontaneous emission in terms of the Einstein 4- and
B-coefficients. Here, we have at last the quantum mechanical procedure for
computing these coefficients. What we have called P(I — IT) for our two-state
ammonia molecule corresponds precisely to the absorption coefficient B,,, of the
Einstein radiation theory. For the complicated ammonia molecule—which is too
difficult for anyone to calculate—we have taken the matrix element (/I [H| I) as
u&, saying that u is to be gotten from experiment. For simpler atomic systems, the
tmn Which belongs to any particular transition can be calculated from the definition

Mmn = <m IH, n) = Hpp, (9'56)

where H,,, is the matrix element of the Hamiltonian which includes the effects of
a weak electric field. The u,, calculated in this way is called the electric dipole
malrix element. The quantum mechanical theory of the absorption and emission
of light is, therefore, reduced to a calculation of these matrix elements for particular
atomic systems.

Our study of a simple two-state system has thus led us to an understanding
of the general problem of the absorption and emission of light.
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10

Other Two-State Systems

10-1 The hydrogen molecular ion

In the last chapter we discussed some aspects of the ammonia molecule under
the approximation that it can be considered as a two-state system. It is, of course,
not really a two-state system—there are many states of rotation, vibration, transla-
tion, and so on—but each of these states of motion must be analyzed in terms of
two internal states because of the flip-flop of the nitrogen atom. Here we are going
to consider other examples of systems which, to some approximation or other,
can be considered as two-state systems. Lots of things will be approximate because
there are always many other states, and in a more accurate analysis they would
have to be taken into account. But in each of our examples we will be able to
understand a great deal by just thinking about two states.

Since we will only be dealing with two-state systems, the Hamiltonian we
need will look just like the one we used in the last chapter. When the Hamiltonian
is independent of time, we know that there are two stationary states with definite—
and usually different—energies. Generally, however, we start our analysis with a
set of base states which are nor these stationary states, but states which may,
perhaps, have some other simple physical meaning. Then, the stationary states
of the system will be represented by a linear combination of these base states.

For convenience, we will summarize the important equations from Chapter
9. Let the original choice of base states be | 1) and | 2). Then any state | ¢) is
represented by the linear combination

) = [ IXT[¥) + [ 22 [¥) = [DCy + | 2)Cs. (10.1)

The amplitudes C; (by which we mean either C; or C,) satisfy the two linear differ-
ential equations

_, dC;
ih = = XJ: H;;Cj, (10.2)

where both / and j take on the values 1 and 2.
When the terms of the Hamiltonian H;; do not depend on 1, the two states of
definite energy (the stationary states), which we call

) = | DemMEt and | ypp) = | Me PEIY

have the energies

Hy + H. Hyy — Hyo\?
E — __lL‘*zﬁ + \/(._112_22> + HysHyy o

Hy + H Hiy — Hys\?
E = mll__ziﬁ _ ,/(-..1.1_2ﬁ) + HisHy: -

The two C’s for each of these states have the same time dependence. The state
vectors | 1) and | II) which go with the stationary states are related to our original
base states | 1) and | 2) by

(10.3)

D) = | Day + | 2)as,
1) = | Day + | 2)a5.

(10.4)
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two protons and an electron.

The a’s are complex constants, which satisfy

lay|? + lag|® = 1,

a; Hy,

— =, 10.5

as  Er — Hy, (10.5)

las|* + |abf® = 1,

a) Hy,

4 _ 12 10.6

ay Err — Hyy (10.6)
If Hyy and Hj, are equal—say both are equal to Eq—and H,y = Hyy = — A,

then Ey = Eq + A, E;f = Eo — A, and the states | ) and | II) are particularly
simple:
1

— 10.7
v (10.7)

|1>=$[|1>—|2>} |11y =

[[ I+ ]2)].

Now we will use these results to discuss a number of interesting examples
taken from the fields of chemistry and physics. The first example is the hydrogen
molecular ion. A positively ionized hydrogen molecule consists of two protons
with one electron worming its way around them. If the two protons are very far
apart, what states would we expect for this system? The answer is pretty clear:
The electron will stay close to one proton and form a hydrogen atom in its lowest
state, and the other proton will remain alone as a positive ion. So, if the two
protons are far apart, we can visualize one physical state in which the electron is
“attached” to one of the protons. There is, clearly, another state symmetric to
that one in which the electron is near the other proton, and the first proton is the
one that is an ion. We will take these two as our base states, and we’ll call them
| 1) and | 2). They are sketched in Fig. 10-1. Of course, there are really many
states of an electron near a proton, because the combination can exist as any one
of the excited states of the hydrogen atom. We are not interested in that variety
of states now; we will consider only the situation in which the hydrogen atom is in
the lowest state—its ground state—and we will, for the moment, disregard spin
of the electron. We can just suppose that for all our states the electron has its
spin “up” along the z-axis.}

Now to remove an electron from a hydrogen atom requires 13.6 electron volts
of energy. So long as the two protons of the hydrogen molecular ion are far apart,
it still requires about this much energy—which is for our present considerations a
great deal of energy—to get the electron somewhere near the midpoint between the
protons. So it is impossible, classically, for the electron to jump from one proton
to the other. However, in quantum mechanics it is possible—though not very
likely. There is some small amplitide for the electron to move from one proton
to the other. As a first approximation, then, each of our base states | /) and | 2)
will have the energy E,, which is just the energy of one hydrogen atom plus one
proton. We can take that the Hamiltonian matrix elements H,, and Hs, are
both approximately equal to £,. The other matrix elements H,, and H,, which
are the amplitudes for the electron to go back and forth, we will again write as — A.

You see that this is the same game we played in the last two chapters. If we
disregard the fact that the electron can flip back and forth, we have two states of
exactly the same energy. This energy will, however, be split into two energy levels
by the possibility of the electron going back and forth—the greater the probability
of the transition, the greater the split. So the two energy levels of the system are
Ey 4+ A and Ey — A, and the states which have these definite energies are given
by Egs. (10.7).

t This is satisfactory so long as there are no important magnetic fields. We will discuss
the effects of magnetic fields on the electron later in this chapter, and the very small
effects of spin in the hydrogen atom in Chapter 12.
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From our solution we see that if a proton and a hydrogen ion are put any-
where near together, the electron will not stay on one of the protons but will flip
back and forth between the two protons. If it starts on one of the protons, it will
oscillate back and forth between the states | I) and | 2)—giving a time-varying
solution. TIn order to have the lowest energy solution (which does not vary with
time), it is necessary to start the system with equal amplitudes for the electron to
be around each proton. Remember, there are not two electrons—we are not saying
that there is an electron around each proton. There is only one electron, and it
has the same amplitude—1/+/2 in magnitude—to be in either position.

Now the amplitude A4 for an electron which is near one proton to get to the
other one depends on the separation between the protons. The closer the protons
are together, the larger the amplitude. You remember that we talked in Chapter
7 about the amplitude for an electron to “penetrate a barrier,” which it could not
do classically. We have the same situation here. The amplitude for an electron
to get across decreases roughly exponentially with the distance—for large distances.
Since the transition probability, and therefore A4, gets larger when the protons are
closer together, the separation of the energy levels will also get larger. If the system
is in the state | I), the energy E, + A increases with decreasing distance, so these
quantum mechanical effects make a repulsive force tending to keep the protons
apart. On the other hand, if the system is in the state | /1), the total energy decreases
if the protons are brought closer together; there is an arrractive force pulling the
protons together. The variation of the two energies with the distance between the
two protons should be roughly as shown in Fig. 10-2. We have, then, a quantum-
mechanical explanation of the binding force that holds the Hd ion together.

£ AE
En
0.3
0.2
0.l
D 0
DISTANCE
BETWEEN ~-0.
PROTONS
-0.2
=E_-A ! 1 1 1
Fx=Fo I 2 3 a
o
D(A)
Fig. 10-2. The energies of the two stationary Fig. 10-3. The energy levels of the H, ion as a
states of the H;" ion as a function of the distance function of the interproton distance D. {(En = 13.6 ev.)

between the two protons.

We have, however, forgotten one thing. In addition to the force we have just
described, there is also an electrostatic repulsive force between the two protons.
When the two protons are far apart—as in Fig. 10-1—the “bare” proton sees only
a neutral atom, so there is a negligible electrostatic force. At very close distances,
however, the “‘bare™ proton begins to get “inside” the electron distribution—that
is, it is closer to the proton on the average than to the electron. So there begins
to be some extra electrostatic energy which is, of course, positive. This energy—
which also varies with the separation—should be included in E,. So for £, we
should take something like the broken-line curve in Fig. 10-2 which rises rapidly
for distances less than the radius of a hydrogen atom.We should add and subtract
the flip-flop energy A from this E,. When we do that, the energies E; and E;; will
vary with the interproton distance D as shown in Fig. 10-3. [In this figure, we
have plotted the results of a more detailed calculation. The interproton distance

10-3




is given in units of 1 A(10~8cm), and the excess energy over a proton plus a hydro-
gen atom is given in units of the binding energy of the hydrogen atom—the so-
called “Rydberg” energy, 13.6 ev.] We see that the state | I/) has a minimum-en-
ergy point. This will be the equilibrium configuration—the lowest energy condition
—for the HY ion. The energy at this point is lower than the energy of a separated
proton and hydrogen ion, so the system is bound. A single electron acts to hold
the two protons together. A chemist would call it a “one-electron bond.”

This kind of chemical binding is also often called ‘“‘quantum mechanical
resonance” (by analogy with the two coupled pendulums we have described
before). But that really sounds more mysterious than it is, it’s only a “resonance”
if you start out by making a poor choice for your base states—as we did also!
If you picked the state | II), you would have the lowest energy state—that’s all.

We can see in another way why such a state should have a lower energy than
a proton and a hydrogen atom. Let’s think about an electron near two protons
with some fixed, but not too large, separation. You remember that with a single
proton the electron is ‘“‘spread out” because of the uncertainty principle. It seeks
a balance between having a low coulomb potential energy and not getting con-
fined into too small a space, which would make a high kinetic energy (because of
the uncertainty relation Ap Ax = #). Now if there are two protons, there is more
space where the electron can have a low potential energy. It can spread out—
lowering its kinetic energy—without increasing its potential energy. The net
result is a lower energy than a hydrogen atom. Then why does the other state | I)
have a higher energy? Notice that this state is the difference of the states | 1) and
| 2). Because of the symmetry of | /) and | 2), the difference must have zero
amplitude to find the electron half-way between the two protons. This means that
the electron is somewhat more confined, which leads to a larger energy.

We should say that our approximate treatment of the HJ ion as a two-state
system breaks down pretty badly once the protons get as close together as they
are at the minimum in the curve of Fig. 10-3, and so, will not give a good value
for the actual binding energy. For small separations, the energies of the two
“states” we imagined in Fig. 6-1 are not really equal to E£,; a more refined quan-
tum mechanical treatment is needed.

Suppose we ask now what would happen if instead of two protons, we had
two different objects—as, for example, one proton and one lithium positive ion
(both particles still with a single positive charge). In such a case, the two terms
H, and H,, of the Hamiltonian would no longer be equal; they would, in fact,
be quite different. If it should happen that the difference (H;1; — Hgg) is, in
absolute value, much greater than 4 = — Hy,, the attractive force gets very weak,
as we can see in the following way.

If we put Hy,H,; = A? into Eqgs. (10.3) we get

H,, + Hj, H,, — sz\/ 442
E = + 1 s
2 2 = Hay

When Hy; — H» is much greater than 42, the square root is very nearly equal to

242
1 _—_ .
t Wy = Ha)

The two energies are then

E; = Hyy +
(10.8)

Err = Hyo

They are now very nearly just the energies H;; and H,» of the isolated atoms,
pushed apart only slightly by the flip-flop amplitude A.
The energy difference E; — Ejgis

242
(Hy1 — H322) + fflm
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The additional separation from the flip-flop of the electron is no longer equal to
24; it is smaller by the factor 4/(H,; — Hj3), which we are now taking to be
much less than one. Also, the dependence of Er — E;; on the separation of the
two nuclei is much smaller than for the H ion—it is also reduced by the factor
A/(Hy1 — Hjs). We can now see why the binding of unsymmetric diatomic
molecules is generally very weak.

In our theory of the HF ion we have discovered an explanation for the
mechanism by which an electron shared by two protons provides, in effect, an
attractive force between the two protons which can be present even when the
protons are at large distances. The attractive force comes from the reduced energy
of the system due to the possibility of the electron jumping from one proton to
the other. In such a jump the system changes from the configuration (hydrogen
atom, proton) to the configuration (proton, hydrogen atom), or switches back.
We can write the process symbolically as

(H,p) = (p, H).

The energy shift due to this process is proportional to the amplitude 4 that an
electron whose energy is — Wy (its binding energy in the hydrogen atom) can
get from one proton to the other.

For large distances R between the two protons, the electrostatic potential
energy of the electron is nearly zero over most of the space it must go when it
makes its jump. In this space, then, the electron moves nearly like a free particle
in empty space—but with a negative energy! We have seen in Chapter 3 [Eq.
(3.7)] that the amplitude for a particle of definite energy to get from one place
to another a distance r away is proportional to

e<i/ﬁ)pr

5

r

where p is the momentum corresponding to the definite energy. In the present
case (using the nonrelativistic formula), p is given by

2

P _ _
£ - —wu (10.9)

This means that p is an imaginary number,

(the other sign for the radical gives nonsense here).
We should expect, then, that the amplitude 4 for the HF ion will vary as

o~ (V2ZmWHIME
A~ —r (10.10)
for large separations R between the two protons. The energy shift due to the
electron binding is proportional to A4, so there is a force pulling the two protons
together which is proportional—for large R—to the derivative of (10.10) with
respect to R.

Finally, to be complete, we should remark that in the two-proton, one-electron
system there is still one other effect which gives a dependence of the energy on R.
We have neglected it until now because it is usually rather unimportant—the
exception is just for those very large distances where the energy of the exchange
term A has decreased exponentially to very small values. The new effect we are
thinking of is the electrostatic attraction of the proton for the hydrogen atom,
which comes about in the same way any charged object attracts a neutral object.
The bare proton makes an electric field & (varying as 1/R?) at the neutral hydrogen
atom. The atom becomes polarized, taking on an induced dipole moment u
proportional to 8. The energy of the dipole is u&, which is proportional to &2—or
to 1/R*. So there is a term in the energy of the system which decreases with the
fourth power of the distance. (It is a correction to Ey.) This energy falls off with
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distance more slowly than the shift 4 given by (10.10); at some large separation
R it becomes the only remaining important term giving a variation of energy with
R—and, therefore, the only remaining force. Note that the electrostatic term has
the same sign for both of the base states (the force is attractive, so the energy is
negative) and so also for the two stationary states, whereas the electron exchange
term A gives opposite signs for the two stationary states.

10-2 Nuclear forces

We have seen that the system of a hydrogen atom and a proton has an energy
of interaction due to the exchange of the single electron which varies at large
separations R as

e—-aR

R

, (10.11)

with ¢ = v/2mWpy/#. (One usually says that there is an exchange of a “virtual”
electron when—as here—the electron has to jump across a space where it would
have a negative energy. More specifically, a “‘virtual exchange” means that the
phenomenon involves a quantum mechanical interference between an exchanged
state and a nonexchanged state.)

Now we might ask the following question: Could it be that forces between
other kinds of particles have an analogous origin? What about, for example, the
nuclear force between a neutron and a proton, or between two protons? In an
attempt to explain the nature of nuclear forces, Yukawa proposed that the force
between two nucleons is due to a similar exchange effect—only, in this case, due
to the virtual exchange, not of an electron, but of a new particle, which he called
a “meson.” Today, we would identify Yukawa’s meson with the m-meson (or
“pion”) produced in high-energy collisions of protons or other particles.

Let’s see, as an example, what kind of a force we would expect from the ex-
change of a positive pion (7+) of mass m, between a proton and a neutron. Just
as a hydrogen atom H° can go into a proton p* by giving up an electron e~

H® > pt + e, (10.12)
a proton p™T can go into a neutron n® by giving up a2 7+ meson:
pt—-n® 4+ ot (10.13)

So if we have a proton at a and a neutron at b separated by the distance R, the
proton can become a neutron by emitting a 7+ which is then absorbed by the
neutron at b, turning it into a proton. There is an energy of interaction of the
two-nucleon (plus pion) system which depends on the amplitude 4 for the pion
exchange—just as we found for the electron exchange in the Hj ion.

In the process (10.12), the energy of the H? atom is less than that of the proton
by Wy (calculating nonrelativistically, and omitting the rest energy mc? of the
electron), so the electron has a negative kinetic energy—or imaginary momentum—
as in Eq. (10.9). In the nuclear process (10.13), the proton and neutron have
almost equal masses, so the 7w will have zero toral energy. The relation between
the total energy F and the momentum p for a pion of mass m; is

E2 - p202 + m12rc4

Since E is zero (or at least negligible in comparison with m,), the momentum is
again imaginary:
p = imgc.

Using the same arguments we gave for the amplitude that a bound electron
would penetrate the barrier in the space between two protons, we get for the nuclear
case an exchange amplitude 4 which should—for large R—go as

e—-(m,c/fz)lf
— .14
R (10.14)
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The interaction energy is proportional to A, and so varies in the same way. We
get an energy variation in the form of the so-called Yukawa potential between
two nucleons. Incidentally, we obtained this same formula earlier directly from
the differential equation for the motion of a pion in free space [see Chapter 28,
Vol. 11, Eq. (28.18)].

We can, following the same line of argument, discuss the interaction between
two protons (or between two neutrons) which results from the exchange of a
neutral pion (7%). The basic process is now

pt—pt + 7% (10.15)

A proton can emit a virtual 7%, but then it remains still a proton. If we have two
protons, proton No. 1 can emit a virtual % which is absorbed by proton No. 2.
At the end, we still have two protons. This is somewhat different from the H7 ion.
There the H® went into a different condition—the proton—after emitting the
electron. Now we are assuming that a proton can emit a 7° without changing its
character. Such processes are, in fact, observed in high-energy collisions. The
process is analogous to the way that an electron emits a photon and ends up still
an electron: e — e + photon. (10.16)
We do not “see” the photons inside the electrons before they are emitted or after
they are absorbed, and their emission does not change the “nature” of the electron.

Going back to the two protons, there is an interaction energy which arises
from the amplitude 4 that one proton emits a neutral pion which travels across
(with imaginary momentum) to the other proton and is absorbed there. This
amplitude is again proportional to (10.14), with my the mass of the neutral pion.
All the same arguments give an equal interaction energy for two neutrons. Since
the nuclear forces (disregarding electrical effects) between neutron and proton,
between proton and proton, between neutron and neutron are the same, we con-
clude that the masses of the charged and neutral pions should be the same. Experi-
mentally, the masses are indeed very nearly equal, and the small difference is about
what one would expect from electric self-energy corrections (see Chapter 28,
Vol. I1).

There are other kinds of particles—like K-mesons—which can be exchanged
between two nucleons. It is also possible for two pions to be exchanged at the
same time. But all of these other exchanged “objects” have a rest mass m, higher
than the pion mass #x, and lead to terms in the exchange amplitude which vary as

e—(mxc/ﬂ)R

R

These terms die out faster with increasing R than the one-meson term. No one
knows, today, how to calculate these higher-mass terms, but for large enough
values of R only the one-pion term survives. And, indeed, those experiments which
involve nuclear interactions only at large distances do show that the interaction
energy is as predicted from the one-pion exchange theory.

In the classical theory of electricity and magnetism, the coulomb electrostatic
interaction and the radiation of light by an accelerating charge are closely related—
both come out of the Maxwell equations. We have seen in the quantum theory that
light can be represented as the quantum excitations of the harmonic oscillations of
the classical electromagnetic fields in a box. Alternatively, the quantum theory
can be set up by describing light in terms of particles—photons—which obey Bose
statistics. We emphasized in Section 4-5 that the two alternative points of view
always give identical predictions. Can the second point of view be carried through
completely to include all electromagnetic effects? In particular, if we want to
describe the electromagnetic field purely in terms of Bose particles—that is, in
terms of photons—what is the coulomb force due to?

From the “particle” point of view the coulomb interaction between two
electrons comes from the exchange of a virtual photon. One electron emits a photon
—as in reaction (10.16)—which goes over to the second electron, where it is
absorbed in the reverse of the same reaction. The interaction energy is again given
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by a formula like (10.14), but now with m, replaced by the rest mass of the photon
—which is zero. So the virtual exchange of a photon between two electrons gives
an interaction energy that varies simply inversely as R, the distance between the
two electrons—just the normal coulomb potential energy! In the “particle” theory
of electromagnetism, the process of a virtual photon exchange gives rise to all the
phenomena of electrostatics.

ELECTRONS

7/ 6

/
/o Fig. 10~4. A set of base states for
the H, molecule.
7

10-3 The hydrogen molecule

As our next two-state system we will look at the neutral hydrogen molecule
H,. Itis, naturally, more complicated to understand because it has two electrons.
Again, we start by thinking of what happens when the two protons are well
separated. Only now we have two electrons to add. To keep track of them, we’ll
call one of them “electron a” and the other “electron 4.” We can again imagine
two possible states. One possibility is that “electron a” is around the first proton
and “‘electron b is around the second, as shown in Fig. 10-4(a). We have simply
two hydrogen atoms. We will call this state | /). There is also another possibility:
that “electron b is around the first proton and that “electron «” is around the
second. We call this state | 2). From the symmetry of the situation, those two
possibilities should be energetically equivalent, but, as we will see, the energy of
the system is nof just the energy of two hydrogen atoms. We should mention that
there are many other possibilities. For instance, “electron @’ might be near the
first proton and “‘electron 4 might be in another state around t}lle same proton.
We’'ll disregard such a case, since it will certainly have higher energy (because of
the large coulomb repulsion between the two electrons). For greater accuracy, we
would have to include such states, but we can get the essentials of the molecular
binding by considering just the two states of Fig. 10.4. To this approximation we
can describe any state by giving the amplitude (I | ¢) to be in the state | I) and an
amplitude (2 | ) to be in state | 2). In other words, the state vector | ¢) can be
written as the linear combination

(o) = 20 | il e

To proceed, we assume—as usual—that there is some amplitude A that the
electrons can move through the intervening space and exchange places. This
possibility of exchange means that the energy of the system is split, as we have seen
for other two-state systems. As for the hydrogen molecular ion, the splitting is
very small when the distance between the protons is large. As the protons approach
each other, the amplitude for the electrons to go back and forth increases, so the
splitting increases. The decrease of the lower energy state means that there is an
attractive force which pulls the atoms together. Again the energy levels rise when
the protons get very close together because of the coulomb repulsion. The net
final result is that the two stationary states have energies which vary with the sep-
aration as shown in Fig. 10-5. At a separation of about 0.74 A, the lower energy
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level reaches a minimum; this is the proton-proton distance of the true hydrogen
molecule.

Now you have probably been thinking of an objection. What about the fact
that the two electrons are identical particles? We have been calling them “electron
a” and “electron b,” but there really is no way to tell which is which. And we have
said in Chapter 4 that for electrons—which are Fermi particles—if there are two
ways something can happen by exchanging the electrons, the two amplitudes will
interfere with a negative sign. This means that if we switch which electron is which,
the sign of the amplitude must reverse. We have just concluded, however, that
the bound state of the hydrogen molecule would be (atr = 0)

- L
| 1) = \/§(|]>+ | 2).

However, according to our rules of Chapter 4, this state is not allowed. If we
reverse which electron is which, we get the state

1
$(|2> + [ 1),

and we get the same sign instead of the opposite one.

These arguments are correct if both electrons have the same spin. 1t is true that
if both electrons have spin up (or both have spin down), the only state that is per-
mitted is

L

1) = \/i(lD = 12)).
For this state, an interchange of the two electrons gives
(12— | 1),
which is — | I), as required. So if we bring two hydrogen atoms near to each

other with their electrons spinning in the same direction, they can go into the
state | I) and not state | /7). But notice that state | I) is the upper energy state.
Its curve of energy versus separation has no minimum. The two hydrogens will
always repel and will not form a molecule. So we conclude that the hydrogen
molecule cannot exist with parallel electron spins. And that is right.

On the other hand, our state | I7) is perfectly symmetric for the two electrons.
In fact, if we interchange which electron we call a and which we call b we get back
exactly the same state. We saw in Section 4-7 that if two Fermi particles are in
the same state, they muss have opposite spins. So, the bound hydrogen molecule
must have one electron with spin up and one with spin down.

The whole story of the hydrogen molecule is really somewhat more compli-
cated if we want to include the proton spins. It is then no longer right to think of
the molecule as a two-state system. It should really be looked at as an eight-state
system—there are four possible spin arrangements for each of our states | 1) and
| 2)—so we were cutting things a little short by neglecting the spins. Our final
conclusions are, however, correct.

We find that the lowest energy state—the only bound state—of the H 2 mole-
cule has the two electrons with spins opposite. The total spin angular momentum
of the electrons is zero. On the other hand, two nearby hydrogen atoms with spins
parallel—and so with a total angular momentum %A—must be in a hi gher (unbound)
energy state; the atoms repel each other. There is an interesting correlation be-
tween the spins and the energies. It gives another illustration of something we
mentioned before, which is that there appears to be an “interaction” energy be-
tween two spins because the case of parallel spins has a higher energy than the
opposite case. In a certain sense you could say that the spins try to reach an
antiparallel condition and, in doing so, have the potential to liberate energy-—not
because there is a large magnetic force, but because of the exclusion principle.
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We saw in Section 10-1 that the binding of two different ions by a single elec-
tron is likely to be quite weak. This is nor true for binding by two electrons. Sup-
pose the two protons in Fig. 10-4 were replaced by any two ions (with closed inner
electron shells and a single ionic charge), and that the binding energies of an
electron at the two ions are different. The energies of states | 1) and | 2) would
still be equal because in each of these states we have one electron bound to each
ion. Therefore, we always have the splitting proportional to 4. Two-electron
binding is ubiquitous—it is the most common valence bond. Chemical binding
usually involves this flip-flop game played by two electrons. Although two atoms
can be bound together by only one electron, it is relatively rare—because it re-
quires just the right conditions.

Finally, we want to mention that if the energy of attraction for an electron to
one nucleus is much greater than to the other, then what we have said earlier about
ignoring other possible states is no longer right. Suppose nucleus a (or it may be
a positive ion) has a much stronger attraction for an electron than does nucleus b.
It may then happen that the total energy is still fairly low even when both electrons
are at nucleus a, and no electron is at nucleus b. The strong attraction may more
than compensate for the mutual repulsion of the two electrons. If it does, the
lowest energy state may have a large amplitude to find both electrons at a (making
a negative ion) and a small amplitude to find any electron at 5. The state looks like
a negative ion with a positive ion. This is, in fact, what happens in an “ionic”
molecule like NaCl. You can see that all the gradations between covalent binding
and ionic binding are possible.

You can now begin to see how it is that many of the facts of chemistry can
be most clearly understood in terms of a quantum mechanical description.

10-4 The benzene molecule

Chemists have invented nice diagrams to represent complicated organic
molecules. Now we are going to discuss one of the most interesting of them—the
benzene molecule shown in Fig. 10-6. It contains six carbon and six hydrogen
atoms in a symmetrical array. Each bar of the diagram represents a pair of elec-
trons, with spins opposite, doing the covalent bond dance. Each hydrogen atom
contributes one electron and each carbon atom contributes four electrons to
make up the total of 30 electrons involved. (There are two more electrons close to
the nucleus of the carbon which form the first, or K, shell. These are not shown
since they are so tightly bound that they are not appreciably involved in the cova-
lent binding.) So each bar in the figure represents a bond, or pair of electrons,
and the double bonds mean that there are two pairs of electrons between alternate
pairs of carbon atoms.

There is a mystery about this benzene molecule. We can calculate what energy
should be required to form this chemical compound, because the chemists have
measured the energies of various compounds which involve pieces of the ring—for
instance, they know the energy of a double bond by studying ethylene, and so on.
We can, therefore, calculate the total energy we should expect for the benzene

H H
I [
C C
~ N Br HOe —~—~ X .br
C C C
o I |
C
XN 7 TBr H RN = ¢ ~Br
C C
I |
H H

Fig. 10-7. Two possibilities of orthodibromobenzene. The two bromines could
be separated by a single bond or by a double bond.
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molecule. The actual energy of the benzene ring, however, is much lower than we
get by such a calculation; it is more tightly bound than we would expect from what
is called an “unsaturated double bond system.” Usually a double bond system
which is not in such a ring is easily attacked chemically because it has a relatively
high energy—the double bonds can be easily broken by the addition of other
hydrogens. But in benzene the ring is quite permanent and hard to break up.
In other words, benzene has a much lower energy than you would calculate from
the bond picture.

Then there is another mystery. Suppose we replace two adjacent hydrogens
by bromine atoms to make ortho-dibromobenzene. There are two ways to do this,
as shown in Fig. 10-7. The bromines could be on the opposite ends of a double
bond as shown in part (a) of the figure, or could be on the opposite ends of a single
bond as in (b). One would think that ortho-dibromobenzene should have two
different forms, but it doesn’t. There is only one such chemical.}

Now we want to resolve these mysteries—and perhaps you have already
guessed how: by noticing, of course, that the “ground state” of the benzene ring
is really a two-state system. We could imagine that the bonds in benzene could
be in either of the two arrangements shown in Fig. 10-8. You say, “But they are
really the same; they should have the same energy.” Indeed, they should. And for
that reason they must be analyzed as a two-state system. FEach state represents a
different configuration of the whole set of electrons, and there is some amplitude
A that the whole bunch can switch from one arrangement to the other—there is a
chance that the electrons can flip from one dance to the other.

As we have seen, this chance of flipping makes a mixed state whose energy is
lower than you would calculate by looking separately at either of the two pictures
in Fig. 10-8. Instead, there are two stationary states—one with an energy above
and one with an energy below the expected value. So actually, the true normal
state (lowest energy) of benzene is neither of the possibilities shown in Fig. 10-8,
but it has the amplitude 1/4/2 to be in each of the states shown. It is the only
state that is involved in the chemistry of benzene at normal temperatures. In-
cidentally, the upper state also exists; we can tell it is there because benzene has a
strong absorption for ultraviolet light at the frequency w = (Er — Er;)/h. You
will remember that in ammonia, where the object flipping back and forth was three
protons, the energy separation was in the microwave region. In benzene, the
objects are electrons, and because they are much lighter, they find it easier to flip
back and forth, which makes the coefficient 4 very much larger. The result is
that the energy difference is much larger—about 1.5 ev, which is the energy of
an ultraviolet photon. ]

What happens if we substitute bromine? Again the two “possibilities” (a)
and (b) in Fig. 10-7 represent the two different electron configurations. The only
difference is that the two base states we start with would have slightly different
energies. The lowest energy stationary state will still involve a linear combination
of the two states, but with unequal amplitudes. The amplitude for state | /) might
have a value something like 1/2/3, say, whereas state | 2) would have the magnitude

t We are oversimplifying a little. Originally, the chemists thought that there should
be four forms of dibromobenzene: two forms with the bromines on adjacent carbon atoms
(ortho-dibromobenzene), a third form with the bromines on next-nearest carbons (meta-
dibromobenzene), and a fourth form with the bromines opposite to each other (para-
dibromobenzene). However, they found only three forms—there is only one form of
the ortho-molecule.

1 What we have said is a little misleading. Absorption of ultraviolet light would be
very weak in the two-state system we have taken for benzene, because the dipole moment
matrix element between the two states is zero. [The two states are electrically symmetric,
so in our formula Eq. (9.55) for the probability of a transition, the dipole moment u
is zero and no light is absorbed.] If these were the only states, the existence of the upper
state would have to be shown in other ways. A more complete theory of benzene, how-
ever, which begins with more base states (such as those having adjacent double bonds)
shows that the true stationary states of benzene are slightly distorted from the ones we
have found. The resulting dipole moments permit the transition we mentioned in the text
to occur by the absorption of ultraviolet light.
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Fig. 10-9. Two base states for the
molecule of the dye magenta.

\/1/3. We can’t say for sure without more information, but once the two energies
H,, and H;,, are no longer equal, then the amplitudes C, and C5 no longer have
equal magnitudes. This means, of course, that one of the two possibilities in the
figure is more likely than the other, but the electrons are mobile enough so that
there is some amplitude for both. The other state has different amplitudes (like
\/1/3 and —+/2/3) but lies at a higher energy. There is only one lowest state,
not two as the naive theory of fixed chemical bonds would suggest.

10-5 Dyes

We will give you one more chemical example of the two-state phenomenon—
this time on a larger molecular scale. It has to do with the theory of dyes. Many
dyes—in fact, most artificial dyes—have an interesting characteristic; they have a
kind of symmetry. Figure 10-9 shows an ion of a particular dye called magenta,
which has a purplish red color. The molecule has three ring structures—two of
which are benzene rings. The third is not exactly the same as a benzene ring
because it has only two double bonds inside the ring. The figure shows two equally
satisfactory pictures, and we would guess that they should have equal energies.
But there is a certain amplitude that all the electrons can flip from one condition
to the other, shifting the position of the “unfilled” position to the opposite end.
With so many electrons involved, the flipping amplitude is somewhat lower than it
is in the case of benzene, and the difference in energy between the two stationary
states is smaller. There are, nevertheless, the usual two stationary states | /) and | II)
which are the sum and difference combinations of the two base states shown in the
figure. The energy separation of | I) and | II) comes out to be equal to the energy
of a photon in the optical region. If one shines light on the molecule, there is a
very strong absorption at one frequency, and it appears to be brightly colored.
That’s why it’s a dye!

Another interesting feature of such a dye molecule is that in the two base
states shown, the center of electric charge is located at different places. As a result,
the molecule should be strongly affected by an external electric field. We had a
similar effect in the ammonia molecule. Evidently we can analyze it by using
exactly the same mathematics, provided we know the numbers E; and A. Gener-
ally, these are obtained by gathering experimental data. If one makes measure-
ments with many dyes, it is often possible to guess what will happen with some
related dye molecule. Because of the large shift in the position of the center of
electric charge the value of u in formula (9.55) is large and the material has a high
probability for absorbing light of the characteristic frequency 24/A. Therefore,
it is not only colored but very strongly so—a small amount of substance absorbs
a lot of light.

The rate of flipping—and, therefore, A—is very sensitive to the complete struc-
ture of the molecule. By changing A, the energy splitting, and with it the color of
the dye, can be changed. Also, the molecules do not have to be perfectly sym-
metrical. We have seen that the same basic phenomenon exists with slight modifica-
tions, even if there is some small asymmetry present. So, one can get some modi-
fication of the colors by introducing slight asymmetries in the molecules. For
example, another important dye, malachite green, is very similar to magenta, but
has two of the hydrogens replaced by CHj;. It’s a different color because the A4 is
shifted and the flip-flop rate is changed.

10-6 The Hamiltonian of a spin one-half particle in a magnetic field

Now we would like to discuss a two-state system involving an object of spin
one-half. Some of what we will say has been covered in earlier chapters, but doing
it again may help to make some of the puzzling points a little clearer. We can
think of an electron at rest as a two-state system. Although we will be talking in
this section about “an electron,” what we find out will be true for any spin one-half
particle. Suppose we choose for our base states | /) and | 2) the states in which the
z-component of the electron spin is +7/2 and —#/2.
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These states are, of course, the same ones we have called (+) and (—) in
earlier chapters. To keep the notation of this chapter consistent, though, we call
the “plus” spin state | 1) and the “minus” spin state | 2)—where “plus” and “minus”
refer to the angular momentum in the z-direction.

Any possible state ¥ for the electron can be described as in Eq. (10.1) by
giving the amplitude C; that the electron is in state | 1), and the amplitude C,
that it is in state | 2). To treat this problem, we will need to know the Hamiltonian
for this two-state system—that is, for an electron in a magnetic field. We begin
with the special case of a magnetic field in the z-direction.

Suppose that the vector B has only a z-component B,. From the definition
of the two base states (that is, spins parallel and antiparallel to B) we know that
they are already stationary states with a definite energy in the magnetic field.
State | 1) corresponds to an energyt equal to —uB, and state | 2) to +uB,. The
Hamiltonian must be very simple in this case since C,, the amplitude to be in state
| 1), is not affected by C3, and vice versa:

., dC
z 7471 = EiC, = —uB,Cy,
(10.17)
lhd—c—z = Egc = +uBzC2.
dt
For this special case, the Hamiltonian is
Hyy = —pB, Hy; =0,
Hyy =0, Hyy = +uB.. (10.18)

So we know what the Hamiltonian is for the magnetic field in the z-direction, and
we know the energies of the stationary states.

Now suppose the field is nof in the z-direction. What is the Hamiltonian?
How are the matrix elements changed if the field is not in the z-direction? We
are going to make an assumption that there is a kind of superposition principle
for the terms of the Hamiltonian. More specifically, we want to assume that if
two magnetic fields are superposed, the terms in the Hamiltonian simply add—if
we know the H;; for a pure B, and we know the H,; for a pure B, then the H;;
for both B, and B, together is simply the sum. This is certainly true if we consider
only fields in the z-direction—if we double B,, then all the H;; are doubled. So
let’s assume that H is linear in the field B. That’s all we need to be able to find
the H;; for any magnetic field.

Suppose we have a constant field B. We could have chosen our z-axis in its
direction, and we would have found two stationary states with the energies = ubB.
Just choosing our axes in a different direction won’t change the physics. Our
description of the stationary states will be different, but their energies will still be

=+ uB—that is,
Er = —uVB; + B + B

and (10.19)
Er;p = +uV B2+ B2+ BZ.

fi

The rest of the game is easy. We have here the formulas for the energies.
We want a Hamiltonian which is linear in B,, B,, and B,, and which will give these
energies when used in our general formula of Eq. (10.3). The problem: find the
Hamiltonian. First, notice that the energy splitting is symmetric, with an average
value of zero. Looking at Eq. (10.3), we can see directly that that requires

Hyy = —Hyy.

(Note that this checks with what we already know when B, and B, are both zero;

T We are taking the rest energy moc? as our *‘zero” of energy and treating the magnetic
moment g of the electron as a negative number, since it points opposite to the spin.
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in that case Hy; = —uB, and Hyy = uB,.) Now if we equate the energies of
Eq. (10.3) with what we know from Eq. (10.19), we have

_ 2
<H”—2@) + [Hiof* = w*(B; + Bj + BY). (10.20)

(We have also made use of the fact that Hy; = H7,, so that H,.H5, can also
be written as [H1,|2) Again for the special case of a field in the z-direction, this
gives

u’B? + |Hyo|® = u’BY.

Clearly, |H,,| must be zero in this special case, which means that H,, cannot
have any terms in B,. (Remember, we have said that all terms must be linear in
B, B,, and B,.)

So far, then, we have discovered that H;; and H,, have terms in B,, while
H,, and Hyy do not. We can make a simple guess that will satisfy Eq. (10.20) if
we say that

Hyy = —uB,,

Hyp = uB, (10.21)
|Hio® = u®(B2 + BY).

And it turns out that that’s the only way it can be done!

“Wait”—you say—“H;, is not linear in B; Eq. (10.21) gives H;, =
uv/B2 + B2 Not necessarily. There is another possibility which is linear,
namely,

and

Hiy = w(B; + iBy).
There are, in fact, several such possibilities—most generally, we could write
Hys = w(B, = iBy)eias

where § is some arbitrary phase. Which sign and phase should we use? It turns
out that you can choose either sign, and any phase you want, and the physical
results will always be the same. So the choice is a matter of convention. People
ahead of us have chosen to use the minus sign and to take ¢ = —1. We might
as well follow suit and write

H12 = _M(Bx - iBy)y H21 = _M(Bx + IBII)

(Incidentally, these conventions are related to, and consistent with, some of the
arbitrary choices we made in Chapter 6.)

The complete Hamiltonian for an electron in an arbitrary magnetic field is,
then

Hyy = —uB,, Hyy = —u(B, — iBy),
t ' v (10.22)
Hyy = —uw(B; + iBy), Hyy = +uB,.
And the equations for the amplitudes C, and C, are
., dC ,
ih =+ = —u[B:C1 + (B: — iB,)Cq],
(10.23)
., dC ;
ih % = —ul(B: + iB,)C1 — B.Cy]

So we have discovered the “equations of motion for the spin states™ of an
electron in a magnetic field. We guessed at them by making some physical argu-
ment, but the real test of any Hamiltonian is that it should give predictions in
agreement with experiment. According to any tests that have been made, these
equations are right. In fact, although we made our arguments only for constant
fields, the Hamiltonian we have written is also right for magnetic fields which
vary with time. So we can now use Eq. (10.23) to look at all kinds of interesting
problems.
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10-7 The spinning electron in a magnetic field

Example number one: We start with a constant field in the z-direction. There
are just the two stationary states with energies =uB,. Suppose we add a small
field in the x-direction. Then the equations look like our old two-state problem.
We get the flip-flop business once more, and the energy levels are split a little
farther apart. Now let’s let the x-component of the field vary with time—say, as
cos wr. The equations are then the same as we had when we put an oscillating
electric field on the ammonia molecule in Chapter 9. You can work out the de-
tails in the same way. You will get the result that the oscillating field causes
transitions from the +-z-state to the —z-state—and vice versa—when the hori-
zontal field oscillates near the resonant frequency wo = 2uB,/A. This gives the
quantum mechanical theory of the magnetic resonance phenomena we described
in Chapter 35 of Volume II (see¢ Appendix).

It is also possible to make a maser which uses a spin one-half system. A
Stern-Gerlach apparatus is used to produce a beam of particles polarized in, say,
the -+-z-direction, which are sent into a cavity in a constant magnetic field. The
oscillating fields in the cavity can couple with the magnetic moment and induce
transitions which give energy to the cavity.

Now let’s look at the following question. Suppose we have a magnetic field
B which points in the direction whose polar angle is 6 and azimuthal angle is
¢, as in Fig. 10-10. Suppose, additionally, that there is an e¢lectron which has been
prepared with its spin pointing along this field. What are the amplitudes C, and
C, for such an electron? In other words, calling the state of the electron 1),
we want to write

[9) = | 1)Cy + | 2)Cs,

where C; and C, are
Cl = <I I¢>’ C2 = <2|\1’>’

where by | /) and | 2) we mean the same thing we used to call | +) and | ~—>
(referred to our chosen z-axis).

The answer to this question is also in our general equations for two-state
systems. First, we know that since the electron’s spin is parallel to B it is in a
stationary state with energy E; = —upB. Therefore, both C; and Cs must vary
as e ~*E1% ag in (9.18); and their coefficients ay and a, are given by (10.5), namely,

4 _ &
do EI—Hll

(10.24)

An additional condition is that a; and a, should be normalized so that laq)? +
las|® = 1. We can take Hy, and Hy, from (10.22) using

B, = Bcosé, B, = Bsin 6 cos ¢, B, = Bsin 6sin ¢.

So we have

Hll = —[.LBCOSO,
) (10.25)
H;y = —uBsin 0 (cos ¢ — isin ¢).

The last factor in the second equation is, incidentally, e ™%, so it is simpler to write
H;, = —uBsin §e~ %, (10.26)

Using these matrix elements in Eq. (10.16)—and canceling —uB from numer-
ator and denominator—we find

ay sin 08_“»

= . 27
as 1 — cosé (10.27)
With this ratio and the normalization condition, we can find both a; and a,.
That’s not hard, but we can make a short cut with a little trick. Notice that
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1 — cos® = 2sin?(8/2), and that sin8 = 2sin (8/2) cos (6/2). Then Eq.
(10.27) is equivalent to

0 _is

a cos E e
ez (10.28)

42 sin o

2

So one possible answer is
] . 0

- Z e, , = sin -, 10.29
ay cos 5 e ay; = sin 5 ( )

since it fits with (10.28) and also makes
lay]? + lag]® = 1.

As you know, multiplying both a; and a, by an arbitrary phase factor doesn’t
change anything. People generally prefer to make Egs. (10.29) more symmetric
by multiplying both by e* 2. So the form usually used is

[ ) .8 L
a; = cos~ e 2 g, = sin 3 e T2 (10.30)

and this is the answer to our question. The numbers ¢ and a, are the amplitudes
to find an electron with its spin up or down along the z-axis when we know that
its spin is along the axis at 6 and ¢. (The amplitudes C; and C, are just a; and
a, times e *Er4R)

Now we notice an interesting thing. The strength B of the magnetic field
does not appear anywhere in (10.30). The result is clearly the same in the limit that
B goes to zero. This means that we have answered in general the question of how
to represent a particle whose spin is along an arbitrary axis. The amplitudes of
(10.30) are the projection amplitudes for spin one-half particles corresponding to
the projection amplitudes we gave in Chapter 5 [Eqgs. (5.38)] for spin-one par-
ticles. We can now find the amplitudes for filtered beams of spin one-half particles
to go through any particular Stern-Gerlach filter.

Let | +z) represent a state with spin up along the z-axis, and | —z) represent
the spin down state. If | +2z’) represents a state with spin up along a z’-axis which
makes the polar angles 6 and ¢ with the z-axis, then in the notation of Chapter
5, we have

(+z|+2') = cos —g— e 2 (—z|+Z) = sin ge‘“wz. (10.31)

These results are equivalent to what we found in Chapter 6, Eq. (6.36), by purely
geometrical arguments. (So if you decided to skip Chapter 6, you now have the
essential results anyway.)

A$ our final example lets look again at one which we’ve already mentioned a
number of times. Suppose that we consider the following problem. We start
with an electron whose spin is in some given direction, then turn on a magnetic
field in the z-direction for 25 minutes, and then turn it off. What is the final state?
Again let’s represent the state by the linear combination | ¢) = | 1)Cy + | 2)C..
For this problem, however, the states of definite energy are also our base states
| I) and | 2). So C; and Cj only vary in phase. We know that

Ci() = C1(0)e—E1th = C (0)et™BUA
and
Cy() = Cz(O)e“"En‘/ﬁ = Cy(0)e— B,

Now initially we said the electron spin was set in a given direction. That means
that initially C; and C, are two numbers given by Eqs. (10.30). After we wait
for a period of time 7', the new C; and C, are the same two numbers multiplied
respectively by e™B:T'" and e~™B:T/"  What state is that? That’s easy. It’s
exactly the same as if the angle ¢ had been changed by the subtraction of 2uB.T/#
and the angle 8 had been left unchanged. That means that at the end of the time
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T, the state | ¢) represents an electron lined up in a direction which differs from
the original direction only by a rofation about the z-axis through the angle A¢ =
2uB,T/#h. Since this angle is proportional to T, we can also say the direction of the
spin precesses at the angular velocity 2uB,/# around the z-axis. This result we
discussed several times previously in a less complete and rigorous manner. Now
we have obtained a complete and accurate quantum mechanical description of
the precession of atomic magnets.

It is interesting that the mathematical ideas we have just gone over for the
spinning electron in a magnetic field can be applied to any two-state system.
That means that by making a mathematical analogy to the spinning electron,
any problem about two-state systems can be solved by pure geometry. It works
like this. First you shift the zero of energy so that (Hy; + Hsp) is equal to
zero so that Hy; = —H,,. Then any two-state problem is formally the same
as the electron in a magnetic field. All you have to do is identify —uB, with H;,
and —u(B, — iB,) with H,. No matter what the physics is originally—an
ammonia molecule, or whatever—you can translate it into a corresponding
electron problem. So if we can solve the electron problem in general, we have
solved all two-state problems.

And we have the general solution for the electron! Suppose you have some
state to start with that has spin “up” in some direction, and you have a magnetic
field B that points in some other direction. You just rotate the spin direction around
the axis of B with the vector angular velocity w(?) equal to a constant times the
vector B (namely w = 2uB/#). As B varies with time, you keep moving the axis
of the rotation to keep it parallel with B, and keep changing the speed of rotation
so that it is always proportional to the strength of B. See Fig. 10-11. If you keep
doing this, you will end up with a certain final orientation of the spin axis, and the
amplitudes C; and Cj are just given by the projections—using (10.30)—into your
coordinate frame. You see, it’s just a geometric problem to keep track of where you
end up after all the rotating. Although it’s easy to see what’s involved, this geo-
metric problem (of finding the net result of a rotation with a varying angular
velocity vector) is not easy to solve explicitly in the general case. Anyway, we see,
in principle, the general solution to any two-state problem. In the next chapter
we will look $ome more into the mathematical techniques for handling the im-
portant case of a spin one-half particle—and, therefore, for handling two-state
systems in general.
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Fig. 10-11. The spin direction of an
electron in a varying magnetic field B{t)
precesses at the frequency w(f) about an
axis parallel to B.




11

More Two-State Systems

11-1 The Pauli spin matrices

We continue our discussion of two-state systems. At the end of the last
chapter we were talking about a spin one-half particle in a magnetic field. We
described the spin state by giving the amplitude Cy that the z-component of spin
angular momentum is +#/2 and the amplitude C, that it is —#/2. In earlier
chapters we have called these base states | +) and | —). We will now go back
to that notation, although we may occasionally find it convenient to use | +) or
| 1), and | —) or | 2), interchangeably.

We saw in the last chapter that when a spin one-half particle with a magnetic
moment p is in a magnetic field B = (B., By, B,), the amplitudes C,(=C1)
and C_(= C,) are connected by the following differential equations:

7 9Cs

7 = uB.C+ + (B, — iB)C_],
(11.1)
L, dC__ ,
ih 5 = —u[(B; + iB,)Cy — B,C_].
In other words, the Hamiltonian matrix Hy; is
H,, = —uB,, H,o = —u(B, — iBy),
11 . 12 P 11.2)
Hyy = —pu(B; + iBy),  Hip = FuB..
And Egs. (11.1) are, of course, the same as
., dC;
th = = Zj:H,-,-CJ-, (11.3)

where 7 and j take on the values 4+ and — (or 1 and 2).

The two-state system of the electron spin is so important that it is very useful
to have a neater way of writing things. We will now make a little mathematical
digression to show you how people usually write the equations of a two-state
system. It is done this way: First, note that each term in the Hamiltonian is
proportional to u and to some component of B; we can then—purely formally—
write that

H;; = —uo%;B, + ¢%B, + 07;B.]. (11.4)

There is no new physics here; this equation just means that the coefficients %,
oY%, and o7;—there are 4 X 3 = 12 of them—can be figured out so that (11.4)
is identical with (11.2).

Let’s see what they have to be. We start with B,. Since B, appears only in
H,, and H,,, everything will be O.K. if

o1 = 1, gis = 0,
z z
021 =0, go9 = —1.

We often write the matrix H;; as a little table like this:

5T
Hi; = 11<H11 H12>_

H21 H22

11-1 The Pauli spin matrices
11-2 The spin matrices as operators

11-3 The solution of the two-state
equations

11-4 The polarization states of the
photon

11-5 The neutral K-mesont}

11-6 Generalization to N-state
systems

Review: Chapter 35, Vol. 1, Polariza-
tion

+ This section should be omitted on the
first reading of this book. It is more ad-
vanced than is appropriate in a first course.



Table 11-1

The Pauli spin matrices

0
-1

)

For the Hamiltonian of a spin one-half particle in the magnetic field B,, this is
the same as

b

Hij — 1l< _‘.U'Bz _M(Bz - lBy)> .
—u(B; + iBy) +uB,

In the same way, we can write the coefficients ¢7; as the matrix

Fand

ol = ll<1 °>- (11.5)
0 —1

Working with the coefficients of B,, we get that the terms of ¢, have to be
0_21:1 = 0) G'ZItZ = 19

x z
g1 = 1, 032 = 0.

a% = (O ’>- (11.6)
10

Finally, looking at B,, we get

Or, in shorthand,

¥ y :
g1 = 0, 0i2 = —1,

y o Y 0
g21 = 1, 32 = 0;

or )
ol = <° ">- aL
i 0

With these three sigma matrices, Egs. (11.2) and (11.4) are identical. To leave
room for the subscripts / and j, we have shown which o goes with which component
of B by putting x, y, and z as superscripts. Usually, however, the i and j are omitted
—it’s easy to imagine they are there—and the x, y, z are written as subscripts.
Then Eq. (11.4) is written

H = —plo,B, + o,B, + 0.B,). (11.8)

Because the sigma matrices are so important—they are used all the time by the
professionals—we have gathered them together in Table 11-1. (Anyone who is
going to work in quantum physics really has to memorize them.) They are also
called the Pauli spin matrices after the physicist who invented them.

In the table we have included one more two-by-two matrix which is needed if
we want to be able to take care of a system which has two spin states of the same
energy, or if we want to choose a different zero energy. For such situations
we must add E¢C, to the first equation in (11.1) and E(C_ to the second equation.
We can include this in the new notation if we define the unit matrix “1” as §,;,

1 =5, = <1 °>, (11.9)
0 1

H = Egb;; — u(0.B, + 0,B, + 0.B,). (11.10)

and rewrite Eq. (11.8) as

Usually, it is understood that any constant like E, is automatically to be multiplied
by the unit matrix; then one writes simply

H = Ey — wo.B; + o,B, + 0.B,). (11.11)

One reason the spin matrices are useful is that any two-by-two matrix at all
can be written in terms of them. Any matrix you can write has four numbers

in it, say,
M = <a b> .
c d
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It can always be written as a linear combination of four matrices. For example,

M=a<1 0>+b<0 1>+c<o o>+d<o 0>'
00 00 10 01

There are many ways of doing it, but one special way is to say that M is a certain
amount of ¢, plus a certain amount of o, and so on, like this:

M = al + Bo, + Yo, + b0,

where the “amounts” «, 8, 7, and § may, in general, be complex numbers.

Since any two-by-two matrix can be represented in terms of the unit matrix
and the sigma matrices, we have all that we ever need for any two-state system.
No matter what the two-state system—the ammonia molecule, the magenta dye,
anything—the Hamiltonian equation can be written in terms of the sigmas.
Although the sigmas seem to have a geometrical significance in the physical
situation of an electron in a magnetic field, they can also be thought of as just
useful matrices, which can be used for any two-state problem.

For instance, in one way of looking at things a proton and a neutron can be
thought of as the same particle in either of two states. We say the nucleon (proton
or neutron) is a two-state system—in this case, two states with respect to its charge.
When looked at that way, the | I) state can represent the proton and the | 2)
state can represent the neutron. People say that the nucleon has two “isotopic-
spin” states.

Since we will be using the sigma matrices as the “arithmetic” of the quantum
mechanics of two-state systems, let’s review quickly the conventions of matrix
algebra. By the “sum” of any two or more matrices we mean just what was obvious
in Eq. (11.4). In general, if we “add” two matrices 4 and B, the “sum” C means
that each term C;; is given by

Ci; = 4i; + Bij.

Each term of C is the sum of the terms in the same slots of 4 and B.

In Section 5-6 we have already encountered the idea of a matrix “product.”
The same idea will be useful in dealing with the sigma matrices. In general, the
“product” of two matrices 4 and B (in that order) is defined to be a matrix C
whose elements are

= Y AaBy;. (11.12)
k

It is the sum of products of terms taken in pairs from the ith row of 4 and the kth
column of B. If the matrices are written out in tabular form as in Fig. 11-1, there
is a good “‘system” for getting the terms of the product matrix. Suppose you are
calculating C53. You run your left index finger along the second row of A and your
right index finger down the third column of B, multiplying each pair and adding
as you go. We have tried to indicate how to do it in the figure.

An A3 Ay B B, B By
\A \\:\%AER\A \\\ N Ba1 B2 § Bay

Bsy Bp  Bipy By
A A A N
41 ve Mg 4 By B \Bs By

Example: C,, =A,, B., + A, B, "'AesBss"'Athhs

23 21 713 22 723

Fig. 11-1. Multiplying two matrices.
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Products of the spin matrices

Table 11-2

0,0y =
0,0, =

0.0 =

gZ=1

o2 =1

g? =1
—0,0, = io,
—0,0, = io,
—0,0, = i0y

It is, of course, particularly simple for two-by-two matrices. For instance,
if we multiply o, times o, we get

. <o 1) <o 1> <1 0>
07 = 0z 0z = : = ’
1 0o/ \1 0 0 1

which is just the unit matrix 1. Or, for another example, let’s work out o,0:

S (R )

Referring to Table 11-1, you see that the product is just / times the matrix o.
(Remember that a number times a matrix just multiplies each term of the matrix.)
Since the products of the sigmas taken two at a time are important—as well as
rather amusing—we have listed them all in Table 11-2. You can work them out as
we have done for ¢ and 0,0,
There’s another very important and interesting point about these ¢ matrices.
We can imagine, if we wish, that the three matrices g, g,, and ¢, are analogous to
the three components of a vector—it is sometimes called the “sigma vector” and
is written o. It is really a ““matrix vector” or a ‘‘vector matrix.” It is three different
matrices—one matrix associated with each axis, x, y, and z. With it, we can write
the Hamiltonian of the system in a nice form which works in any coordinate
system:
H = —uo- B. (11.13)

Although we have written our three matrices in the representation in which
“up” and “down” are in the z-direction—so that ¢, has a particular simplicity—
we could figure out what the matrices would look like in some other representation.
Although it takes a lot of algebra, you can show that they change among themselves
like the components of a vector. (We won’t, however, worry about proving it
right now. You can check it if you want.) You can use o in different coordinate
systems as though it is a vector.

You remember that the H is related to energy in quantum mechanics. It is,
in fact, just equal to the energy in the simple situation where there is only one state.
Even for two-state systems of the electron spin, when we write the Hamiltonian
as in Eq. (11.13), it looks very much like the classical formula for the energy of a
little magnet with magnetic moment & in a magnetic field. B Classically, we would
say

U= —p- B, (11.14)

where u is the property of the object and B is an external field. We can imagine
that Eq. (11.14) can be converted to (11.13) if we replace the classical energy by
the Hamiltonian and the classical u by the matrix ue. Then, after this purely
formal substitution, we interpret the result as a matrix equation. It is sometimes
said that to each quantity in classical physics there corresponds a matrix in quantum
mechanics. It is really more correct to say that the Hamiltonian matrix corre-
sponds to the energy, and any quantity that can be defined via energy has a corre-
sponding matrix.

For example, the magnetic moment can be defined via energy by saying that
the energy in an external field B is —u - B. This defines the magnetic moment
vector . Then we look at the formula for the Hamiltonian of a real (quantum)
object in a magnetic field and try to identify whatever the matrices are that corre-
spond to the various quantities in the classical formula. That’s the trick by which
sometimes classical quantities have their quantum counterparts.

You may try, if you want, to understand how a classical vector is equal to a
matrix uo, and maybe you will discover something—but don’t break your head
on it. That’s not the idea—they are not equal. Quantum mechanics is a different
kind of a theory to represent the world. It just happens that there are certain
correspondences which are hardly more than mnemonic devices—things to re-
member with. That is, you remember Eq. (11.14) when you learn classical physics;
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then if you remember the correspondence m — ue, you have a handle for re-
membering Eq. (11.13). Of course, nature knows the quantum mechanics, and
the classical mechanics is only an approximation; so there is no mystery in the
fact that in classical mechanics there is some shadow of quantum mechanical laws—
which are truly the ones underneath. To reconstruct the original object from the
shadow is not possible in any direct way, but the shadow does help you to re-
member what the object looks like. Equation (11.13) is the truth, and Eq. (11.14)
is the shadow. Because we learn classical mechanics first, we would like fo be
able to get the quantum formula from it, but there is no sure-fire scheme for
doing that. We must always go back to the real world and discover the correct
quantum mechanical equations. When they come out looking like something in
classical physics, we are in luck.

If the warnings above seem repetitious and appear to you to be belaboring
self-evident truths about the relation of classical physics to quantum physics,
please excuse the conditioned reflexes of a professor who has usually taught
quantum mechanics to students who hadn’t heard about Pauli spin matrices until
they were in graduate school. Then they always seemed to be hoping that, somehow,
quantum mechanics could be seen to follow as a logical consequence of classical
mechanics which they had learned thoroughly years before. (Perhaps they wanted
to avoid having to learn something new.) You have learned the classical formula,
Eq. (11.14), only a few months ago—and then with warnings that it was inade-
quate—so maybe you will not be so unwilling to take the quantum formula,
Eq. (11.13), as the basic truth.

11-2 The spin matrices as operators

While we are on the subject of mathematical notation, we would like to de-
scribe still another way of writing things—a way which is used very often because
it is so compact. It follows directly from the notation introduced in Chapter 8.
If we have a system in a state |y(z)), which varies with time, we can—as we
did in Eq. (8.31)—write the amplitude that the system would be in the state | i)
at ¢ + Aras

W1+ a0y = 22 GLUGt+ a0 | J)T [¥®).

The matrix element (/| U(t, t + Ar)|j) is the amplitude that the base state | j)
will be converted into the base state | /) in the time interval Az. We then defined
H;; by writing

i
f
and we showed that the amplitudes Cy(?) = (i | ¢(¢)) were related by the differ-
ential equations

<ll U(t,t -+ At) I j> = 61’]' - H,'j(t) At,

d‘;" = > H;C;. (11.15)
J

it
If we write out the amplitudes C; explicitly, the same equation appears as
L d . .
ih 2 (i19) = 2]: Hi(j | ¥). (11.16)

Now the matrix elements H;; are also amplitudes which we can write as (i | H| j);
our differential equation looks like this:

ih%“"”: 2 GLHI NG (11.17)

We see that —i/4 (i | H|j) is the amplitude that—under the physical conditions
described by H—a state |j) will, during the time dz, “generate” the state | 7).
(All of this is implicit in the discussion of Section 8-4.)
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Now following the ideas of Section 8-2, we can drop out the common term
(i]in Eq. (11.17)—since it is true for any state | /)—and write that equation simply as

) N
ih 1) = 20 HI DG (11.18)
i
Or, going one step further, we can also remove the j and write

L d
i |¥) = H|¥). (11.19)

In Chapter 8 we pointed out that when things are written this way, the H in
H|j) or H|¢) is called an operator. From now on we will put the little hat
(*) over an operator to remind you that it is an operator and not just a number.
We will write H|y¢). Although the two equations (11.18) and (11.19) mean
exactly the same thing as Eq. (11.17) or Eq. (11.15), we can think about them in a
different way. For instance, we would describe Eq. (11.18) in this way: “The
time derivative of the state vector | ) is equal to what you get by operating with
the Hamiltonian operator H on each base state, multiplying by the amplitude
(j | ¥) that ¢ is in the state j, and summing over all j.”” Or Eq. (11.19) is described
this way. “The time derivative (times /%) of a state | ¢) is equal to what you get
if you operate with the Hamiltonian H on the state vector | ¢).” It’s just a short-
hand way of saying what is in Eq. (11.17), but, as you will see, it can be a great
convenience.

If we wish, we can carry the “abstraction” idea one more step. Equation
(11.19) is true for any state | ). Also the left-hand side, ifid/dt, is also an operator
—it’s the operation “differentiate by ¢ and multiply by i#.” Therefore, Eq. (11.19)
can also be thought of as an equation between operators—the operator equation

d
lhit—ﬁ.

The Hamiltonian operator (within a constant) produces the same result as does
d/dt when acting on any state. Remember that this equation—as well as Eq.
(11.19)—is not a statement that the H operator is just the identical operation as
d/dr. The equations are the dynamical law of nature—the law of motion—for a
quantum system.

Just to get some practice with these ideas, we will show you another way we
could get to Eq. (11.18). You know that we can write any state | ¢) in terms of
its projections into some base set [see Eq. (8.8)],

lvy = 22 119 (11.20)
How does | ) change with time? Well, just take its derivative:
@19 =G T 1061w, (.21

Now the base states | i) do not change with time (at least we are always taking them
as definite fixed states), but the amplitudes (i | ) are numbers which may vary.
So Eq. (11.21) becomes

%|¢>=;|i>§<x’w>. (11.22)
Since we know d(i | y)/dt from Eq. (11.16), we get
ADEEEDY )5 Hli 1)
= IS G HLGIY = — 5 T HIDG .

This is Eq. (11.18) all over again.
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So we have many ways of looking at the Hamiltonian. We can think of the
set of coefficients H,; as just/a bunch of numbers, or we can think of the “ampli-
tudes” (i | H|j), or we can think of the “matrix” H,;, or we can think of the
operator” H. It all means the same thing.

Now let’s go back to our two-state systems. If we write the Hamiltonian in
terms of the sigma matrices (with suitable numerical coefficients like B,, etc.),
we can clearly also think of ¢f; as an amplitude (i |o, |j) or, for short, as the
operator &,. If we use the operator idea, we can write the equation of motion of a
state | ) in a magnetic field as

ih gz |¥) = —u(B:8z + B, + B.5) | ¥). (11.23)

When we want to “use” such an equation we will normally have to express | )
in terms of base vectors (just as we have to find the components of space vectors
when we want specific numbers). So we will usually want to put Eq. (11.23) in
the somewhat expanded form:

in 14y = —u > Boe + Boy + BOD Y. (1124)

Now you will see why the operator idea is so neat. To use Eq. (11.24) we
need to know what happens when the & operators work on each of the base states.
Let’s find out. Suppose we have &, | +); it is some vector | ?), but what? Well,
let’s multiply it on the left by (+ |; we have

(16| +) =011 =1
(using Table 11-1). So we know that
(+17 =1L (11.25)
Now let’s multiply &, | 4+) on the left by (— |. We get
(=]o:]+) =091 =05

SO
(=M =0. (11.26)

There is only one state vector that satisfies both (11.25) and (11.26); it is | +).
We discover then that

6.0 +) =]+ (11.27)

By this kind of argument you can easily show that all of the properties of the sigma
matrices can be described in the operator notation by the set of rules given in
Table 11-3.

If we have products of sigma matrices, they go over into products of operators.
When two operators appear together as a product, you carry out first the operation
with the operator which is farthest to the right. For instance, by 6.6, | +) we
are to understand 6,(3, | +)). From Table 11-3, we get 6, | +) = i| —), so

8.0y | +) = 6.0 | =) (11.28)

Now any number—Ilike i—just moves through an operator (operators work only
on state vectors); so Eq. (11.28) is the same as

8y | 4) = 0. | =) = i| +).

If you do the same thing for 4,6, | —), you will find that

Looking at Table 11-3, you see that 6,6, operating on | +) or | —) gives just
what you get if you operate with &, and multiply by —i. We can, therefore, say
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Properties of the é-operator

o[ +) = [+)
o] =)= —1]-)
oz +) =1]-)
o:| =) =|+)
oyl +)=1i|-)

oyl =)= —i|+)




that the operation &, is identical with the operation i&,, and write this statement
as an operator equation:
G0, = 10, (11.29)

Notice that this equation is identical with one of our matrix equations of Table
11-2. So again we see the correspondence between the matrix and operator points
of view. Each of the equations in Table 11-2 can, therefore, also be considered
as equations about the sigma operators. You can check that they do indeed
follow from Table 11-3. It is best, when working with these things, not to keep
track of whether a quantity like ¢ or H is an operator or a matrix. All the equations
are the same either way, so Table 11-2 is for sigma operators, or for sigma matrices,
as you wish.

11-3 The solution of the two-state equations

We can now write our two-state equation in various forms, for example,
either as

d
or (11.30)

5 419

., dC;
lﬁ 1 = ; H,‘jC,‘

They both mean the same thing. For a spin one-half particle in a magnetic field,
the Hamiltonian H is given by Eq. (11.8) or by Eq. (11.13).

If the field is in the z-direction, then—as we have seen several times by now—
the solution is that the state | ), whatever it is, precesses around the z-axis (just
as if you were to take the physical object and rotate it bodily around the z-axis)
at an angular velocity equal to twice the magnetic field times u/A. The same is
true, of course, for a magnetic field along any other direction, because the physics
is independent of the coordinate system. If we have a situation where the magnetic
field varies from time to time in a complicated way, then we can analyze the situa-
tion in the following way. Suppose you start with the spin in the 4-z-direction
and you have an x-magnetic field. The spin starts to turn. Then if the x-field is
turned off, the spin stops turning. Now if a z-field is turned on, the spin precesses
about z, and so on. So depending on how the fields vary in time, you can figure
out what the final state is—along what axis it will point. Then you can refer that
state back to the original | +) and | —) with respect to z by using the projection
formulas we had in Chapter 10 (or Chapter 6). If the state ends up with its
spin in the direction (6, ¢), it will have an up-amplitude cos (6/2)e~*/? and a
down-amplitude sin (8/2)e™*/2, That solves any problem. It is a word description
of the solution of the differential equations.

The solution just described is sufficiently general to take care of any two-state
system. Let’s take our example of the ammonia molecule—including the effects of
an electric field. If we describe the system in terms of the states | /) and | /I), the
equations look like this:

if d—‘% = +AC; + u8Cry,
(11.31)
ifi df;tll = —ACrr + u8Cy.

You say, “No, I remember there was an E, in there.” Well, we have shifted the
origin of energy to make the E, zero. (You can always do that by changing both
amplitudes by the same factor—e®#o"/"—and get rid of any constant energy.)
Now if corresponding equations always have the same solutions, then we really
don’t have to do it twice. If we look at these equations and look at Eq. (11.1),
then we can make the following identification. Let’s call | /) the state | +) and
| IT) the state | —). That does not mean that we are lining-up the ammonia in space,
or that | +) and | —) has anything to do with the z-axis. It is purely artificial.
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We have an artificial space that we might “call the ammonia molecule repre-
sentative space,” or something—a three-dimensional “‘diagram” in which being
“up” corresponds to having the molecule in the state | ) and being “down”
along this false z-axis represents having a molecule in the state | II). Then, the
equations will be identified as follows. First of all, you see that the Hamiltonian
can be written in terms of the sigma matrices as

H = + Ao, + uéo,. (11.32)

Or, putting it another way, uB, in Eq. (11.1) corresponds to —4 in Eq. (11.32),
and uB, corresponds to —u&. In our “model” space, then, we have a constant B
field along the z-direction. If we have an electric field & which is changing with
time, then we have a B field along the x-direction which varies in proportion.
So the behavior of an electron in a magnetic field with a constant component in the
z-direction and an oscillating component in the x-direction is mathematically analo-
gous and corresponds exactly to the behavior of an ammonia molecule in an oscillating
electric field. Unfortunately, we do not have the time to go any further into the
details of this correspondence, or to work out any of the technical details. We
only wished to make the point that a// systems of two states can be made analogous
to a spin one-half object precessing in a magnetic field.

11-4 The polarization states of the photon

There are a number of other two-state systems which are interesting to study,
and the first new one we would like to talk about is the photon. To describe a
photon we must first give its vector momentum. For a free photon, the frequency
is determined by the momentum, so we don’t have to say also what the frequency
is. After that, though, we still have a property called the polarization. Imagine
that there is a photon coming at you with a definite monochromatic frequency
(which will be kept the same throughout all this discussion so that we don’t have
a variety of momentum states). Then there are two directions of polarization.
In the classical theory, light can be described as having an electric field which
oscillates horizontally or an electric field which oscillates vertically (for instance);
these two kinds of light are called x-polarized and y-polarized light. The light can
also be polarized in some other direction, which can be made up from the super-
position of a field in the x-direction and one in the y-direction. Or if you take
the x- and the y-components out of phase by 90°, you get an electric field that
rotates—the light is elliptically polarized. (This is just a quick reminder of the
classical theory of polarized light that we studied in Chapter 35, Vol. 1.)

Now, however, suppose we have a single photon—just one. There is no electric
field that we can discuss in the same way. All we have is one photon. But a photon
has to have the analog of the classical phenomena of polarization. There must be
at least two different kinds of photons. At first, you might think there should be
an infinite variety—after all, the electric vector can point in all sorts of directions.
We can, however, describe the polarization of a photon as a two-state system.
A photon can be in the state | x) or in the state | y). By | x) we mean the polariza-
tion state of each one of the photons in a beam of light which classically is x-polar-
ized light. On the other hand, by | y) we mean the polarization state of each of the
photons in a y-polarized beam. And we can take | x) and | y) as our base states
of a photon of given momentum pointing at you—in what we will call the z-direc-
tion. So there are two base states | x) and | y), and they are all that are needed
to describe any photon at all.

For example, if we have a piece of polaroid set with its axis to pass light polar-
ized in what we call the x-direction, and we send in a photon which we know is in
the state | y), it will be absorbed by the polaroid. If we send in a photon which we
know is in the state | x), it will come right through as | x). If we take a piece of
calcite which takes a beam of polarized light and splits it into an | x) beam and a
| y) beam, that piece of calcite is the complete analog of a Stern-Gerlach apparatus
which splits a beam of silver atoms into the two states | +) and | —). So every-
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Fig. 11-2. Coordinates at  right
angles to the momentum vector of the
photon.

Fig. 11-3. Two sheets of polaroid
with angle 6 between planes of polariza-

tion.

thing we did before with particles and Stern-Gerlach apparatuses, we can do
again with light and pieces of calcite. And what about light filtered through a
piece of polaroid set at an angle §? Is that another state? Yes, indeed, it is another
state. Let’s call the axis of the polaroid x’ to distinguish it from the axes of our
base states. See Fig. 11-2. A photon that comes out will be in the state | x).
However, any state can be represented as a linear Icombination of base states, and
the formula for the combination is, here,

|’y = cos 8| x) + sin 6] y). (11.33)

That is, if a photon comes through a piece of polaroid set at the angle 6 (with
respect to x), it can still be resolved into | x) and | y) beams—by a piece of calcite,
for example. Or you can, if you wish, just analyze it into x- and y-components in
your imagination. Either way, you will find the amplitude cos 6 to be in the | x)
state and the amplitude sin 6 to be in the | y) state.

Now we ask this question: Suppose a photon is polarized in the x’-direction
by a piece of polaroid set at the angle 6 and arrives at a polaroid at the angle zero—
as in Fig. 11-3; what will happen? With what probability will it get through?
The answer is the following. After it gets through the first polaroid, it is definitely
in the state | x'). The second polaroid will let the photon through if it is in the
state | x) (but absorb it if it is the state | y)). So we are asking with what probability
does the photon appear to be in the state | x)? We get that pyobability from the
absolute square of amplitude (x | x’) that a photon in the state | x’) is also in
the state | x). What is (x| x’)? Just multiply Eq. (11.33) by (x | to get

{(x|x') = cos@{x|x)+ sin6 (x| y).

Now (x| y) = 0, from the physics—as they must be if | x) and | y) are base states
—and (x| x) = 1. So we get

(x| x") = cos 8,
and the probability is cos? 8. For example, if the first polaroid is set at 30°, a

photon will get through 3/4 of the time, and 1/4 of the time it will heat the polaroid
by being absorbed therein.

AXIS OF POLARIZER

LIGHT

STATE x>

Now let us see what happens classically in the same situation. We would have
a beam of light with an electric field which is varying in some way or another—say
“unpolarized.” After it gets through the first polaroid, the electric field is oscillat-
ing in the x’-direction with a size §; we would draw the field as an oscillating
vector with a peak value &, in a diagram like Fig. 11-4. Now when the light
arrives at the second polaroid, only the x-component, &, cos 6, of the electric
field gets through. The intensity is proportional to the square of the field and,
therefore, to 8% cos? 6. So the energy coming through is cos? ¢ weaker than the
energy which was entering the last polaroid.
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The classical picture and the quantum picture give similar results. If you
were to throw 10 billion photons at the second polaroid, and the average prob-
ability of each one going through is, say, 3/4, you would expect 3/4 of 10 billion
would get through. Likewise, the energy that they would carry would be 3/4
of the energy that you attempted to put through. The classical theory says nothing
about the statistics of the thing—it simply says that the energy that comes through
will be precisely 3/4 of the energy which you were sending in. That is, of course,
impossible if there is only one photon. There is no such thing as 3/4 of a photon.
It is either all there, or it isn’t there at all. Quantum mechanics tells us it is all
there 3/4 of the time. The relation of the two theories is clear.

What about the other kinds of polarization? For example, right-hand
circular polarization? In the classical theory, right-hand circular polarization
has equal components in x and y which are 90° out of phase. In the quantum
theory, a right-hand circularly polarized (RHC) photon has equal amplitudes to
be polarized | x) or | y), and the amplitudes are 90° out of phase. Calling a RHC
photon a state | R) and a LHC photon a state | L), we can write (see Vol. I, Section
33-1)

1 ,
|R) = — (Ix) + i),

2 (11.34)

|L>=—V‘—§(|x>—i|y>).

—the 1/+/2 is put in to get normalized states. With these states you can calculate
any filtering or interference effects you want, using the laws of quantum theory.
If you want, you can also choose | R) and | L) as base states and represent every-
thing in terms of them. You only need to show first that (R | L) = 0—which you
can do by taking the conjugate form of the first equation above [see Eq. (8.13)] and
multiplying it by the other. You can resolve light into x- and y-polarizations, or
into x’- and y’-polarizations, or into right and left polarizations as a basis.

Just as an example, let’s try to turn our formulas around. Can we represent
the state | x) as a linear combination of right and left? Yes, here it is:

L

| x) = (IR) + | L)),
V2 (11.35)
- b -
[y) = 73 (| Ry — [ L)).

Proof: Add and subtract the two equations in (11.34). It is easy to go from
one base to the other.

One curious point has to be made, though. If a photon is right circularly
polarized, it shouldn’t have anything to do with the x- and y-axes. If we were
to look at the same thing from a coordinate system turned at some angle about
the direction of flight, the light would still be right circularly polarized—and simi-
larly for left. The right and left circularly polarized light are the same for any such
rotation; the definition is independent of any choice of the x-direction (except
that the photon direction is given). Isn’t that nice—it doesn’t take any axes to
define it. Much better than x and y. On the other hand, isn’t it rather a miracle
that when you add the right and left together you can find out which direction x
was? If “right” and “left” do not depend on x in any way, how is it that we can
put them back together again and get x? We can answer that question in part
by writing out the state | R’), which represents a photon RHC polarized in the
frame x’, y’. In that frame, you would write

’ =L ’ TR
| R") \/z(lx>+l|y))-
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How does such a state look in the frame x, y? Just substitute x’ from Eq.(11. 33)
and the corresponding | y')—we didn’t write it down, but it is (—sin 6) | x) +
(cos 6) | y). Then

| R" %[cosﬂx}—{-sinﬂy)—isin0[x)+icos(9|y)]

—\}—i [(cos 8 — isin §) | x) + i(cos & — i sin 6) | )]

1
V2

The first term is just | R), and the second is e*™; our result is that

(I x) + i| y))(cos 6 — isin 6).

[RY = e ™| R). (11.36)

t

The states | R’) and | R) are the same except for the phase factor e™*. If you work

out the same thing for | L’), you get thatt
Ly = et?|L). (11.37)

Now you see what happens. If we add | R) and | L), we get something different
from what we get when we add | R’) and | L’). For instance, an x-polarized photon
is [Eq. (11.35)] the sum of | R) and | L), but a y-polarized photon is the sum with
the phase of one shifted 90° backward and the other 90° forward. That is just
what we would get from the sum of | R’) and | L’) for the special angle 8§ = 90°,
and that’s right. An x-polarization in the prime frame is the same as a y-polariza-
tion in the original frame. So it is not exactly true that a circularly polarized
photon looks the same for any set of axes. Its phase (the phase relation of the
right and left circularly polarized states) keeps track of the x-direction.

11-5 The neutral K-meson]

We will now describe a two-state system in the world of the strange particles—
a system for which quantum mechanics gives a most remarkable prediction. To
describe it completely would involve us in a lot of stuff about strange particles,
so we will, unfortunately, have to cut some corners. We can only give an outline
of how a certain discovery was made—to show you the kind of reasoning that was
involved. It begins with the discovery by Gell-Mann and Nishijima of the concept
of strangeness and of a new law of conservation of strangeness. It was when Gell-
Mann and Pais were analyzing the consequences of these new ideas that they came
across the prediction of a most remarkable phenomenon we are going to describe.
First, though, we have to tell you a little about “strangeness.”

We must begin with what are called the strong interactions of nuclear particles.
These are the interactions which are responsible for the strong nuclear forces—
as distinct, for instance, from the relatively weaker electromagnetic interactions.
The interactions are “strong” in the sense that if two particles get close enough
to interact at all, they interact in a big way and produce other particles very easily.

t It’s similar to what we found (in Chapter 6) for a spin one-half particle when we
rotated the coordinates about the z-axis—then we got the phase factors e+/2. It is, in
fact, exactly what we wrote down in Section 5-7 for the | +) and | — ) states of a spin-one
particle—which is no coincidence. The photon is a spin-one particle which has, however,
no ‘‘zero” state.

1 We now feel that the material of this section is longer and harder than is appropriate
at this point in our development. We suggest that you skip it and continue with Section
11-6. If you are ambitious and have time you may wish to come back to it later. We
leave it here, because it is a beautiful example—taken from recent work in high-energy
physics—of what can be done with our formulation of the quantum mechanics of two-
state systems.
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The nuclear particles have also what is called a “weak interaction” by which cer-
tain things can happen, such as beta decay, but always very slowly on a nuclear
time scale—the weak interactions are many, many orders of magnitude weaker
than the strong interactions and even much weaker than electromagnetic inter-
actions.

When the strong interactions were being studied with the big accelerators,
people were surprised to find that certain things that “should” happen—that were
expected to happen—did not occur. For instance, in some interactions a particle
of a certain type did not appear when it was expected. Gell-Mann and Nishijima
noticed that many of these peculiar happenings could be explained at once by
inventing a new conservation law: the conservation of strangeness. They proposed
that there was a new kind of attribute associated with each particle—which they
called its “strangeness” number—and that in any strong interaction the “quantity
of strangeness” is conserved.

Suppose, for instance, that a high-energy negative K-meson—with, say, an
energy of many Bev—collides with a proton. Out of the interaction may come
many other particles: 7-mesons, K-mesons, lambda particles, sigma particles—
any of the mesons or baryons listed in Table 2-2 of Vol. 1. It is observed, however,
that only certain combinations appear, and never others. Now certain conservation
laws were already known to apply. First, energy and momentum are always
conserved. The total energy and momentum after an event must be the same as
before the event. Second, there is the conservation of electric charge which says
that the total charge of the outgoing particles must be equal to the total charge
carried by the original particles. In our example of a K-meson and a proton
coming together, the following reactions do occur:

KT4+pop+ K +7t+ 7=+ 7°
or (11.38)
KT+ p— 32— 4+ 7+

We would never get:
K"+p-op+K 4+ 7% o K 4p—ae+ 7t (11.39)

because of the conservation of charge. It was also known that the number of
baryons is conserved. The number of baryons our must be equal to the number
of baryons in. For this law, an antiparticle of a baryon is counted as minus one
baryon. This means that we can—and do—see

K=+ p—A 4 7°
or (11.40)
K"+p—=p+K +p+5p

(where p is the antiproton, which carries a negative charge). But we never see

KT+ p—>K 4+ 7t 4+ #°
or (11.41)
K- +p->p+K +n

(even when there is plenty of energy), because baryons would not be conserved.

These laws, however, do nor explain the strange fact that the following re-
actions—which do not immediately appear to be especially different from some of
those in (11.38) or (11.40)—are also never observed:

K +p—p+K +K°
or

Ki+p—op+ 7 (11.42)
or

K™+ p— A%+ K°

The explanation is the conservation of strangeness. With each particle goes a
number—its strangeness S—and there is a law that in any strong interaction, the
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Table 11-4

The strangeness numbers of the strongly interacting particles

—
S
-2 —1 0 +1
Baryons z+t p
E0 A0, 30 n
Ol =
Mesons Tt K+
K() 1r0 KO
K- _

Note: The =~ is the antiparticle of the =+ (or vice versa).

total strangeness our must equal the total strangeness that went in. The proton and
antiproton (p, p), the neutron and antineutron (n, i), and the w-mesons (7, 7°,
7™) all have the strangeness number zero; the K™ and K° mesons have strangeness
+1; the K~ and K° (the anti-K°),t the A° and the Z-particles (+, 0, —) have
strangeness —1. There is also a particle with strangeness —2—the Z-particle
(capital “ksi”’)—and perhaps others as yet unknown. We have made a list of these
strangenesses in Table 11-4.

Let’s see how the strangeness conservation works in some of the reactions we
have written down. If we start with a K™ and a proton, we have a total strangeness
of (=1 + 0) = —1. The conservation of strangeness says that the strangeness
of products after the reaction must also add up to —1. You see that that is so for
the reactions of (11.38) and (11.40). But in the reactions of (11.42) the strangeness
of the right-hand side is zero in each case. Such reactions do not conserve strange-
ness, and do not occur. Why? Nobody knows. Nobody knows any more than
what we have just told you about this. Nature just works that way.

Now let’s look at the following reaction: a =~ hits a proton. You might,
for instance, get a A® particle plus a neutral K-particle—two neutral particles.
Now which neutral K do you get? Since the A-particle has a strangeness —1 and
the 7 and p* have a strangeness zero, and since this is a fast production reaction,
the strangeness must not change. The K-particle must have strangeness + 1—it
must therefore be the K°. The reaction is

™~ + p— A + K,
with
S=040= —1+4 +1 (conserved).

If the K° were there instead of the K°, the strangeness on the right would be —2
—which nature does not permit, since the strangeness on the left side is zero.
On the other hand, a K° can be produced in other reactions, such as

n+n—n+p+ K°+4 K,

S=0+0=0+0+ +1+ —I
or

K-+ p—n+ K°
S— —140=0+4 —1.

You may be thinking, “That’s all a lot of stuff, because how do you know
whether it is a K or a K®? They look exactly the same. They are antiparticles of
each other, so they have exactly the same mass, and both have zero electric charge.

t Read as: “K-naught-bar,” or “K-zero-bar.”
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Fig. 11-5. High-energy events as seen in a hydrogen bubble chamber. (a) A 7™ meson interacts
with a hydrogen nucleus (proton) producing a A" particle and a K® meson. Both particles decay in

the chamber. (b) A K meson interacts with a proton producing a

-+

meson and a A particle

which then decays. (The neutral particles leave no tracks. Their inferred trajectories are indicated

here by light dashed lines.)

How do you distinguish them?” By the reactions they produce. For example,
a K can interact with matter to produce a A-particle, like this:

K+ p— A%+ ot

but a K° cannot. There is no way a K° can produce a A-particle when it interacts
with ordinary matter (protons and neutrons).t So the experimental distinction
between the K° and the K°® would be that one of them will and one of them will

not produce A’s.

One of the predictions of the strangeness theory is then this—if, in an experi-
ment with high-energy pions, a A-particle is produced with a neutral K-meson,
then rhat neutral K-meson going into other pieces of matter will never produce a A.
The experiment might run something like this. You send a beam of 7~ -mesons
into a large hydrogen bubble chamber. A 7™ track disappears, but somewhere
else a pair of tracks appear (a proton and a 77) indicating that a A-particle has
disintegratedf—see Fig. 11-5. Then you know that there is a K° somewhere which

you cannot see.

You can, however, figure out where it is going by using the conservation
of momentum and energy. [It could reveal itself later by disintegrating into two
charged particles, as shown in Fig. 11-5(a).] As the K° goes flying along, it may
interact with one of the hydrogen nuclei (protons), producing perhaps some other
particles. The prediction of the strangeness theory is that it will never produce a

A-particle in a simple reaction like, say,

K°+ p— A% 4+ 7°

although a K° can do just that. That is, in a bubble chamber a K° might produce
the event sketched in Fig. 11-5(b)—in which the A is seen because it decays—but
a K% will not. That’s the first part of our story. That’s the conservation of strange-

ness.

The conservation of strangeness is, however, not perfect. There are very slow
disintegrations of the strange particles—decays taking a long¥ time like 1071°
second in which the strangeness is not conserved. These are called the “‘weak’
decays. For example, the K° disintegrates into a pair of m-mesons (+ and —)

1 Except, of course, if it also produces two K*’s or other particles with a total strange-
ness of +2. We can think here of reactions in which there is insufficient energy to produce

these additional strange particles.

1 The free A-particle decays slowly via a weak interaction (so strangeness need not be
conserved). The decay products are either a p and a #—, or an n and a x°. The lifetime

is 2.2 X 10710 sec,

4 A typical time for strong interactions is more like 10—23 sec.
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with a lifetime of 1071° second. That was, in fact, the way K-particles were
first seen. Notice that the decay reaction

K-> 7t 4+ 7

does not conserve strangeness, so it cannot go “fast” by the strong interaction;
it can only go through the weak decay process.

Now the R° also disintegrates in the same way—into a =+ and a 7—— and
also with the same lifetime

R 7 4+ nt.

Again we have a weak decay because it does not conserve strangeness. There is a
principle that for any reaction there is the corresponding reaction with “matter”
replaced by “antimatter” and vice versa. Since the K° is the antiparticle of the
K?, it should decay into the antiparticles of the 7+ and 7™, but the antiparticle
of a w1 is the 7. (Or, if you prefer, vice versa. It turns out that for the m-mesons
it doesn’t matter which one you call “matter.””) So as a consequence of the weak
decays, the K® and K° can go into the same final products. When “seen” through
their decays—as in a bubble chamber—they look like the same particle. Only
their strong interactions are different.

At last we are ready to describe the work of Gell-Mann and Pais. They
first noticed that since the K° and the K ° can both turn into states of two 7-mesons
there must be some amplitude that a K° can turn into a K and also that a K°
can turn into a K° Writing the reactions as one does in chemistry, we would have

K°s 1 + 7t sK° (11.43)

These reactions imply that there is some amplitude per unit time, say —i/h times
(K°| W | K9, that a K° will turn into a K° through the weak interaction re-
sponsible for the decay into two w-mesons. And there is the corresponding
amplitude (K°| W | K°) for the reverse process. Because matter and antimatter
behave in exactly the same way, these two amplitudes are numerically equal;
we’ll call them both 4:

(K°|W|K% = (K°|W|R% = 4. (11.44)

Now—said Gell-Mann and Pais—here is an interesting situation. What
people have been calling two distinct states of the world—the K° and the K°—
should really be considered as one two-state system, because there is an amplitude
to go from one state to the other. For a complete treatment, one would, of course,
have to deal with more than two states, because there are also the states of 27’s,
and so on; but since they were mainly interested in the relation of K° and K°,
they did not have to complicate things and could make the approximation of a
two-state system. The other states were taken into account to the extent that their
effects appeared implicitly in the amplitudes of Eq. (11.44).

Accordingly, Gell-Mann and Pais analyzed the neutral particle as a two-
state system. They began by choosing as their two base states the states | K°) and
| K°). (From here on, the story goes very much as it did for the ammonia mole-
cule.) Any state | ) of the neutral K-particle could then be described by giving
the amplitudes that it was in either base state. We’ll call these amplitudes

Cy = (K°ly), C_=(K"y). (11.45)

The next step was to write the Hamiltonian equations for this two-state
system. If there were no coupling between the K?® and the K° the equations
would be simply

., dC
1h7+ = EoCy, e
in %= - Ec .

i ~ TV~
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But since there is the amplitude (K° | W | K©) for the K° to turn into a K° there
should be the additional term

(R°|W|K%C_ = 4C_

added to the right-hand side of the first equation. And similarly, the term AC,
should be inserted in the equation for the rate of change of C_.

But that’s not all. When the two-pion effect is taken into account there is an
additional amplitude for the K to turn into itself through the process

K°—> 7 + 7% — K°

The additional amplitude, which we would write (K°| W [ K?), is just equal to
the amplitude (K°| W | K°), since the amplitudes to go to and from a pair of
s-mesons are identical for the K© and the K° If you wish, the argument can be
written out in detail like this. First writet

K| WK = (K°|W|2m)Qm | W|K?)

and
(K°|W|K% = (K°|W|2m)Qm | W [K’).

Because of the symmetry of matter and antimatter

@m|W[K% = @7 |W]|K?),

and also
(K| W |27) = (K°| W|2m).

It then follows that (K° | W | K®) = (K°| W | K°), and also that (K® | W | K®) =
(K°| W | K, as we said earlier. Anyway, there are the two additional ampli-
tudes (K® | W | K and (K° | W | K°), both equal to A4, which should be included
in the Hamiltonian equations. The first gives a term AC, on the right-hand side
of the equation for dC /dt, and the second gives a new term AC_ in the equation
for dC_/dt. Reasoning this way, Gell-Mann and Pais concluded that the Hamil-
tonian equations for the K° K° system should be

9 = Boc, + AC_+ ACy,

(11.47)
., dC_
ifh —dt——

Il

E,C_ + AC, + AC_.

We must now correct something we have said in earlier chapters: that two
amplitudes like (K°| W |K?) and (K°| W |K®) which are the reverse of each
other, are always complex conjugates. That was true when we were talking about
particles that did not decay. But if particles can decay—and can, therefore,
become ““lost”’—the two amplitudes are not necessarily complex conjugates. So
the equality of (11.44) does not mean that the amplitudes are real numbers; they
are in fact complex numbers. The coefficient A4 is, therefore, complex; and we
can’t just incorporate it into the energy E,.

Having played often with electron spins and such, our heroes knew that the
Hamiltonian equations of (11.47) meant that there was another pair of base states
which could also be used to represent the K-particle system and which would have
especially simple behaviors. They said, “Let’s take the sum and difference of these
two equations. Also, let’s measure all our energies from E,, and use units for

t We are making a simplification here. The 2w-system can have many states corre-
sponding to various momenta of the w-mesons, and we should make the right-hand side
of this equation into a sum over the various base states of the =’s. The complete treatment
still leads to the same conclusions.

11-17



energy and time that make # = 1.” (That’s what modern theoretical physicists
always do. It doesn’t change the physics but makes the equations take on a
simple form.) Their result:

idit (Co + C) = 24(C4 + C), id% (Cy — C) = 0. (11.48)

It is apparent that the combinations of amplitudes (C. 4+ C_) and
(C4 — C_) act independently from each other (corresponding, of course, to
the stationary states we have been studying earlier). So they concluded that it
would be more convenient to use a different representation for the K-particle.
They defined the two states

1KY + R - L
\/i(lKH-lK)), | K2) v

They said that instead of thinking of the K® and K° mesons, we can equally well
think in terms of the two “particles” (that is, “states’’) X; and K,. (These corre-
spond, of course, to the states we have usually called | 7) and | II). We are not
using our old notation because we want now to follow the notation of the original
authors—and the one you will see in physics seminars.)

Now Gell-Mann and Pais didn’t do all this just to get different names for
the particles—there is also some strange new physics in it. Suppose that C; and
C, are the amplitudes that some state |y) will be either a K; or a K, meson:

|Ky) = (K% = [R").  (11.49)

Ci = (Ki|y¥), Co=(Kz|y)

From the equations of (11.49),

1 1
C,=—(Cy+ C), Cyo = — (Cyp — C). (11.50)
1 7 G+ ) 2 3 +
Then the Egs. (11.48) become
.dCy .dCy
i = 24C,, i~ = 0. (11.51)
The solutions are )
Ci(H) = C1(0)e™ 4, Cy(t) = Cx(0), (11.52)

where, of course, C1(0) and C5(0) are the amplitudes at 1 = O.
These equations say that if a neutral K-particle starts out in the state | K,)
at ¢ = 0 [then C;(0) = 1 and C,(0) = 0], the amplitudes at the time ¢ are

Ci1() = 74, Cy(1) = 0.

Remembering that A4 is a complex number, it is convenient to take 4 =
a — i8. (Since the imaginary part of 24 turns out to be negative, we write it as
minus i3.) With this substitution, C(#) reads

Ci(t) = C1(0)e Pt~ (11.53)

The probability of finding a K particle at ¢ is the absolute square of this ampli-
tude, which is e~2%%, And, from Eqs. (11.52), the probability of finding the K, state
at any time is zero. That means that if you make a K-particle in the state | K;),
the probability of finding it in the same state decreases exponentially with time—
but you will never find it in state | K,). Where does it go? It disintegrates into two
m-mesons with the mean life 7 = 1/28 which is, experimentally, 1070 sec. We
made provisions for that when we said that 4 was complex.

On the other hand, Eq. (11.52) says that if we make a K-particle completely
in the K, state, it stays that way forever. Well, that’s not really true. It is observed
experimentally to disintegrate into three m-mesons, but 600 times slower than the
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two-pion decay we have described. So there are some other small terms we
have left out in our approximation. But so long as we are considering only the
two-pion decay, the K, lasts “forever.”

Now to finish the story of Gell-Mann and Pais. They went on to consider what
happens when a K-particle is produced with a A° particle in a strong interaction.
Since it must then have a strangeness of +1, it must be produced in the KO state.
So at ¢t = 0 it is neither a K; nor a K, but a mixture. The initial conditions are

C 0 =1, c_(0) =0

But that means—from Eq. (11.50)—that

1 1
C 0 = b C 0 = 5
1(0) V3 2(0) IV
and—from Eq. (11.51)—that
Cit) = - e Pt ) = = (11.54)
V2 V2

Now remember that K; and K, are each linear combinations of K° and K°.
In Eqs. (11.54) the amplitudes have been chosen so that at ¢ = 0 the K?° parts
cancel each other out by interference, leaving only a K° state. But the | K;) state
changes with time, and the | K,) state does not. After ¢t = 0 the interference of
C, and C, will give finite amplitudes for both K® and K°.

What does all this mean? Let’s go back and think of the experiment we
sketched in Fig. 11-5. A 7~ meson has produced a A° particle and a K® meson
which is tooting along through the hydrogen in the chamber. As it goes along,
there is some small but uniform chance that it will collide with a hydrogen nucleus.
At first, we thought that strangeness conservation would prevent the K-particle
from making a A° in such an interaction. Now, however, we see that that is not
right. For although our K-particle starts out as a K°—which cannot make a
A°—it does not stay this way. After a while, there is some amplitude that it will
have flipped to the K° state. We can, therefore, sometimes expect to see a A°
produced along the K-particle track. The chance of this happening is given by
the amplitude C_, which we can [by using Eq. (11.50) backwards] relate to C,
and C,. The relation is

L
V2

As our K-particle goes along, the probability that it will “act like” a KO is equal
to |C_| 2, which is

C_ = (C, — Cs) = A Ple™™ — 1) (11.55)

|c_|? = (1 + e~ 28t — 207Bt cos af). (11.56)

A complicated and strange result!

This, then, is the remarkable prediction of Gell-Mann and Pais: when a K°
is produced, the chance that it will turn into a K °—as it can demonstrate by being
able to produce a A’—varies with time according to Eq. (11.56). This prediction
came from using only sheer logic and the basic principles of the quantum me-
chanics—with no knowledge at all of the inner workings of the K-particle. Since
nobody knows anything about the inner machinery, that is as far as Gell-Mann
and Pais could go. They could not give any theoretical values for @ and 8. And
nobody has been able to do so to this date. They were able to give a value of 8
obtained from the experimentally observed rate of decay into two =’s (28 =
1019 sec), but they could say nothing about e.

We have plotted the function of Eq. (11.56) for two values of « in Fig. 11-6.
You can see that the form depends very much on the ratio of « to 8. There is no
K probability at first; then it builds up. If « is large, the probability would have
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(a)

a=4mf
2g=10"

large oscillations. If « is small, there will be little or no oscillation—the prob-
ability will just rise smoothly to 1/4.

Now, typically, the K-particle will be travelling at a constant speed near the
speed of light. The curves of Fig. 11-6 then also represent the probability along
the track of observing a K°—with typical distances of several centimeters. You
can see why this prediction is so remarkably peculiar. You produce a single
particle and instead of just disintegrating, it does something else. Sometimes it
disintegrates, and other times it turns into a different kind of a particle. Its char-
acteristic probability of producing an effect varies in a strange way as it goes
along. There is nothing else quite like it in nature. And this most remarkable
prediction was made solely by arguments about the interference of amplitudes.

sec 2 a=mB

0.75

|
0.25

i ]
0.50 075 1.0

t (10719 sec)

Fig. 11-6. The

t (107'%sec)

function of Eq. (11-56): la) for @ = 7@, (b) for o = 47g

(with 28 = 10'° sec).

If there is any place where we have a chance to test the main principles of
quantum mechanics in the purest way—does the superposition of amplitudes
work or doesn’t it?—this is it. In spite of the fact that this effect has been pre-
dicted now for several years, there is no experimental determination that is very
clear. There are some rough results which indicate that the « is not zero, and that
the effect really occurs—they indicate that « is between 28 and 43. That’s all there
is, experimentally. It would be very beautiful to check out the curve exactly to see
if the principle of superposition really still works in such a mysterious world as
that of the strange particles—with unknown reasons for the decays, and unknown
reasons for the strangeness.

The analysis we have just described is very characteristic of the way quantum
mechanics is being used today in the search for an understanding of the strange
particles. All the complicated theories that you may hear about are no more and
no less than this kind of elementary hocus-pocus using the principles of super-
position and other principles of quantum mechanics of that level. Some people
claim that they have theories by which it is possible to calculate the 8 and a, or
at least the « given the 3, but these theories are completely useless. For instance,
the theory that predicts the value of a, given the 8, tells us that the value of a
should be infinite. The set of equations with which they originally start involves
two m-mesons and then goes from the two 7’s back to a K%, and so on. When it’s
all worked out, it does indeed produce a pair of equations like the ones we have
here; but because there are an infinite number of states of two 7’s, depending on
their momenta, integrating over all the possibilities gives an « which is infinite.
But nature’s o is not infinite. So the dynamical theories are wrong. It is really
quite remarkable that the phenomena which can be predicted ar all in the world
of the strange particles come from the principles of quantum mechanics at the
level at which you are learning them now.
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11-6 Generalization to N-state systems

We have finished with all the two-state systems we wanted to talk about.
In the following chapters we will go on to study systems with more states. The
extension to N-state systems of the ideas we have worked out for two states is
pretty straightforward. It goes like this.

If a system has N distinct states, we can represent any state | y(¢)) as a linear

combination of any set of base states | i), where i = 1,2,3,...,N;
[ ¥(@) = D [ HCuD). (11.57)
all ¢

The coefficients C,(¢) are the amplitudes (i | ¢(¢2)). The behavior of the amplitudes
C; with time is governed by the equations

n 450 Z HiiC,, (11.58)

where the energy matrix H,; describes the physics of the problem. It looks the
same as for two states. Only now, both / and j must range over all N base states,
and the energy matrix H;;—or, if you prefer, the Hamiltonian—is an N by N
matrix with N2 numbers. As before, H; = H,;—so long as particles are conserved
—and the diagonal elements H;; are real numbers.

We have found a general solution for the C’s of a two-state system when the
energy matrix is constant (doesn’t depend on 7). It is also not difficult to solve
Eq. (11.58) for an N-state system when H is not time dependent. Again, we begin
by looking for a possible solution in which the amplitudes all have the same time
dependence. We try

C, = a,'e"”/’”E'. (11.59)

When these C,’s are substituted into (11.58), the derivatives dC;(f)/dt become just
(—i/M)EC;. Canceling the common exponential factor from all terms, we get

= Y Hya;. (11.60)
j

This is a set of N linear algebraic equations for the N unknowns ay, a,, . . ., dy,
and there is a solution only if you are lucky—only if the determinant of the co-
efficients of all the a’s is zero. But it’s not necessary to be that sophisticated; you
can just start to solve the equations any way you want, and you will find that they
can be solved only for certain values of E. (Remember that F is the only adjustable
thing we have in the equations.)

If you want to be formal, however, you can write Eq. (11.60) as

> (Hij — 8;;E)a; = 0. (11.61)

Then you can use the rule—if you know it—that these equations will have a solu-
tion only for those values of E for which
Det (H” - 6,;]'E) = 0. (1162)

Each term of the determinant is just H;;, except that E is subtracted from every
diagonal element. That is, (11.62) means just

Hll -_ E H12 H13
Det| Hz1  Hax— E Hi = 0. (11.63)

Hj, E3; Hzz — E
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This is, of course, just a special way of writing an algebraic equation for E which
is the sum of a bunch of products of all the terms taken a certain way. These
products will give all the powers of E up to EV,

So we have an Nth order polynomial equal to zero, and there are, in general,
N roots. (We must remember, however, that some of them may be multiple
roots—meaning that two or more roots are equal.) Let’s call the N roots

EIsEIbEI[IJ°"’En’-'-sEN° (11'64)

(We will use n to represent the nth Roman numeral, so that n takes on the values
LI ..., N.) It may be that some of these energies are equal—say E;; = Ejj;—
but we will still choose to call them by different names.

The equations (11.60)— or (11.61)—have one solution for each value of E. If
you put any one of the E’s—say E,—into (11.60) and solve for the a;, you get a
set which belongs to the energy E,. We will call this set a;(n).

Using these a;(n) in Eq. (11.59), we have the amplitudes C;(n) that the definite
energy states are in the base state | /). Letting | n) stand for the state vector of the
definite energy state at 1 = 0, we can write

Ci(n) = (i l n>e(i/ﬁ)Ent’
with
(i |m) = a;(n). (11.65)

The complete definite energy state | ¢,,(£)} can then be written as
[¥a() = 2 [ Dai(m)e=IMEn,

or
[¥a(®)) = |n)e'PEnt, (11.66)

The state vectors | n) describe the configuration of the definite energy states, but
have the time dependence factored out. Then they are constant vectors which
can be used as a new base set if we wish.

Each of the states | n) has the property—as you can easily show—that when
operated on by the Hamiltonian operator H it gives just E, times the same state:

A|n) = E.|n). (11.67)

The energy E, is, then, a number which is a characteristic of the Hamiltonian
operator H. As we have seen, a Hamiltonian will, in general, have several char-
acteristic energies. In the mathematician’s world these would be called the “char-
acteristic values” of the matrix H;;. Physicists usually call them the “eigenvalues”
of H. (“Eigen” is the German word for “characteristic” or “proper.”) With
each eigenvalue of H—in other words, for each energy—there is the state of
definite energy, which we have called the “stationary state.” Physicists usually
call the states | n) “the eigenstates of H.” Each eigenstate corresponds to a par-
ticular eigenvalue E,,.

Now, generally, the states | n)—of which there are N—can also be used as a
base set. For this to be true, all of the states must be orthogonal, meaning that
for any two of them, say | n) and | m),

(n|m) = 0. (11.68)

This will be true automatically if all the energies are different. Also, we can
multiply all the a;(n) by a suitable factor so that all the states are normalized—by
which we mean that
(n|n) =1 (11.69)
for all n.
When it happens that Eq. (11.63) accidentally has two (or more) roots with
the same energy, there are some minor complications. First, there are still two
different sets of a;’s which go with the two equal energies, but the states they give
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may not be orthogonal. Suppose you go through the normal procedure and find
two stationary states with equal energies—let’s call them |u) and | v). Then it
will not necessarily be so that they are orthogonal—if you are unlucky,

(m]v) = 0.

It is, however, always true that you can cook up two new states, which we will
call | ') and | v’), that have the same energies and are also orthogonal, so that

W|v) = 0. (11.70)

You can do this by making | w’) and | ') a suitable linear combination of | w)
and | »), with the coefficients chosen to make it come out so that Eq. (11.70) is
true. It is always convenient to do this. We will generally assume that this has
been done so that we can always assume that our proper energy states | n) are
all orthogonal.

We would like, for fun, to prove that when two of the stationary states have
different energies they are indeed orthogonal. For the state | n) with the energy
E,,, we have that

H|n) = E,|n). (11.71)

This operator equation really means that there is an equation between numbers.
Filling the missing parts, it means the same as

> GLA )G In) = Ei|n). (11.72)
i
If we take the complex conjugate of this equation, we get
Y GIAIYGIDT = EGim® (11.73)
i

Remember now that the complex conjugate of an amplitude is the reverse ampli-
tude, so (11.73) can be rewritten as

2 @ NGIALD = Edali). (11.74)

Since this equation is valid for any i, its “short form” is
(n|A = Exn|, (11.75)

which is called the adjoint to Eq. (11.71). )
Now we can easily prove that E, is a real number. We multiply Eq. (11.71)
by (n| to get

(n|A|n) = E, (11.76)
since (n |n) = 1. Then we multiply Eq. (11.75) on the left by | n) to get
(n|H|n) = E}. 11.77)
Comparing (11.76) with (11.77) it is clear that
E, = E}, (11.78)

which means that E, is real. We can erase the star on E, in Eq. (11.75).

Finally we are ready to show that the different energy states are orthogonal.
Let | n) and | m) be any two of the definite energy base states. Using Eq. (11.75)
for the state m, and multiplying it by | n), we get that

(m |A|n) = Eqn(m|n).
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But if we multiply (11.71) by (m |, we get
(m |H|n) = E,(m |n).

Since the left sides of these two equations are equal, the right sides are, also:
E.(m|n) = E,(m|n). (11.79)

If E,, = E, the equation does not tell us anything. But if the energies of the two
states | m) and |n) are different (E,, # E,), Eq. (11.79) says that (m | n) must
be zero, as we wanted to prove. The two states are necessarily orthogonal so long
as E, and E,, are numerically different.
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12

The Hyperfine Splitting in Hydrogen

12-1 Base states for a system with two spin one-half particles

In this chapter we take up the “hyperfine splitting” of hydrogen, because
it is a physically interesting example of what we can already do with quantum
mechanics. It’s an example with more than two states, and it will be illustrative of
the methods of quantum mechanics as applied to slightly more complicated prob-
lems. It is enough more complicated that once you see how this one is handled
you can get immediately the generalization to all kinds of problems.

As you know, the hydrogen atom consists of an electron sitting in the neigh-
borhood of the proton, where it can exist in any one of a number of discrete
energy states in each one of which the pattern of motion of the electron is different.
The first excited state, for example, lies 3/4 of a Rydberg, or about 10 electron
volts, above the ground state. But even the so-called ground state of hydrogen
is not really a single, definite-energy state, because of the spins of the electron and
the proton. These spins are responsible for the “hyperfine structure” in the energy
levels, which splits all the energy levels into several nearly equal levels.

The electron can have its spin either ““‘up” or “down” and, the proton can
also have irs spin either “up” or “down.” There are, therefore, four possible spin
states for every dynamical condition of the atom. That is, when people say “the
ground state” of hydrogen, they really mean the “four ground-states,” and not
just the very lowest state. The four spin states do not all have exactly the same
energy; there are slight shifts from the energies we would expect with no spins.
The shifts are, however, much, much smaller than the 10 volts or so from the
ground state to the next state above. As a consequence, each dynamical state has
its energy split into a set of very close energy levels—the so-called hyperfine splitting.

The energy differences among the four spin states is what we want to calculate
in this chapter. The hyperfine splitting is due to the interaction of the magnetic
moments of the electron and proton, which gives a slightly different magnetic
energy for each spin state. These energy shifts are only about ten-millionths
of an electron volt—really very small compared with 10 volts! It is because of
this large gap that we can think about the ground state of hydrogen as a “four-
state” system, without worrying about the fact that there are really many more
states at higher energies. We are going to limit ourselves here to a study of the
hyperfine structure of the ground state of the hydrogen atom.

For our purposes we are not interested in any of the details about the positions
of the electron and proton because that has all been worked out by the atom so to
speak—it has worked itself out by getting into the ground state. We need know
only that we have an electron and proton in the neighborhood of each other with
some definite spatial relationship. In addition, they can have various different
relative orientations of their spins. It is only the effect of the spins that we want to
look into.

The first question we have to answer is: What are the base states for the system?
Now the question has been put incorrectly. There is no such thing as “zhe” base
states, because, of course, the set of base states you may choose is not unique.
New sets can always be made out of linear combinations of the old. There are
always many choices for the base states, and among them, any choice is equally
legitimate. So the question is not what is zhe base set, but what could a base set
be? We can choose any one we wish for our own convenience. It is usually best
to start with a base set which is physically the clearest. It may not be the solution

12-1

12-1 Base states for a system with
two spin one-half particles

12-2 The Hamiltonian for the ground
state of hydrogen

12-3 The energy levels
12-4 The Zeeman splitting
12-5 The states in a magnetic field

12-6 The projecticn matrix for spin
one



to any problem, or may not have any direct importance, but it will generally
make it easier to understand what is going on.
We choose the following four base states:

State I: The electron and proton are both spin “up.”
State 2: The electron is “up” and the proton is “down.”
State 3: The electron is “down” and the proton is “up.”
State 4: The electron and proton are both “down.”

We need a handy notation for these four states, so we’ll represent them this way:

/ /ELECTRON State 1: | 4 +); electron up, proton up.
/ 4/// State 2: | + —); electron up, proton down.
% / State 3: | — +); electron down, proton up. az.1y
/ /%PROTON State 4: | — —); electron down, proton down.

Al Aty

You will have to remember that the first plus or minus sign refers to the electron
and the second, to the proton. For handy reference, we’ve also summarized the
notation in Fig. 12-1. Sometimes it will also be convenient to call these states
[1),[2),]3),and | 4).

You may say, “But the particles interact, and maybe these aren’t the right
base states. It sounds as though you are considering the two particles indepen-
dently.” Yes, indeed! The interaction raises the problem: what is the Hamiltonian
for the system, but the interaction is not involved in the question of how to describe
the system. What we choose for the base states has nothing to do with what
happens next. It may be that the atom cannot ever stay in one of these base states,
even if it is started that way. That’s another question. That’s the question:
How do the amplitudes change with time in a particular (fixed) base? In choosing
the base states, we are just choosing the “unit vectors” for our description.

While we’re on the subject, let’s look at the general problem of finding a set
of base states when there is more than one particle. You know the base states for
a single particle. An electron, for example, is completely described in real life—not
in our simplified cases, but in real life—by giving the amplitudes to be in each of
the following states:

| electron “up” with momentum p)

Fig. 12-1. A set of base states for or

the ground state of the hydrogen atom. | electron “down” with momentum P

There are really two infinite sets of states, one state for each value of p. That is
to say that an electron state | y) is completely described if you know all the ampli-
tudes

<+:P l ‘/’) and <_’p | '//>»

where the + and — represent the components of angular momentum along some
axis—usually the z-axis—and p is the vector momentum. There must, therefore,
be two amplitudes for every possible momentum (a multi-infinite set of base
states). That is all there is to describing a single particle.

When there is more than one particle, the base states can be written in a
similar way. For instance, if there were an electron and a proton in a more com-
plicated situation than we are considering, the base states could be of the following
kind:
| an electron with spin “up,” moving with momentum p1and

a proton with spin “down,” moving with momentum p).

And so on for other spin combinations. If there are more than two particles—
same idea. So you see that to write down the possible base states is really very easy.
The only problem is, what is the Hamiltonian?

For our study of the ground state of hydrogen we don’t need to use the full
sets of base states for the various momenta. We are specifying particular mo-
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mentum states for the proton and electron when we say “the ground state.” The
details of the configuration—the amplitudes for all the momentum base states—
can be calculated, but that is another problem. Now we are concerned only with
the effects of the spin, so we can take only the four base states of (12.1). Our
next problem is: What is the Hamiltonian for this set of states?

12-2 The Hamiltonian for the ground state of hydrogen

We'll tell you in a moment what it is. But first, we should remind you of one
thing: any state can always be written as a linear combination of the base states.
For any state | ¢) we can write

(W)= |+ +X+ + |+ ]+ =X+ =¥ +]1— )=+ ¥
+]|= =X=—1¥). (122

Remember that the complete brackets are just complex numbers, so we can also
write them in the usual fashion as C;, where i = 1, 2, 3, or 4, and write Eq. (12.2) as

) = [+ +)Ci+ |+ =)Ca+ | = +)C5 + | - —)Ca (12.3)

By giving the four amplitudes C; we completely describe the spin state | ). If
these four amplitudes change with time, as they will, the rate of change in time is
given by the operator H. The problem is to find the A

There is no general rule for writing down the Hamiltonian of an atomic
system, and finding the right formula is much more of an art than finding a set of
base states. We were able to tell you a general rule for writing a set of base states
for any problem of a proton and an electron, but to describe the general Hamilton-
ian of such a combination is too hard at this level. Instead, we will lead you to a
Hamiltonian by some heuristic argument—and you will have to accept it as the
correct one because the results will agree with the test of experimental observation.

You will remember that in the last chapter we were able to describe the
Hamiltonian of a single, spin one-half particle by using the sigma matrices—or the
exactly equivalent sigma operators. The properties of the operators are sum-
marized in Table 12-1. These operators—which are just a convenient, shorthand
way of keeping track of the matrix elements of the type (+ |o. | +)—were
useful for describing the behavior of a single particle of spin one-half. The question
is: Can we find an analogous device to describe a system with two spins? The
answer is yes, very simply, as follows. We invent a thing which we will call “sigma
electron,” which we represent by the vector operator ¢°, and which has the
x-, y-, and z-components, ¢2, 5, 65. We now make the convention that when one
of these things operates on any one of our four base states of the hydrogen atom,
it acts only on the electron spin, and in exactly the same way as if the electron were
all by itself. Example: What is o5 | — +)? Since ¢, on an electron “down”
is —i times the corresponding state with the electron “up”,

o5l = +) = —il+ +)

(When o¢ acts on the combined state it flips over the electron, but does nothing to
the proton and multiplies the result by —i.) Operating on the other states, o3
would give

oyl + +) =il— +)

oyl + =)y =i|l—- —)

oyl — =)= —i[+ —)
Just remember that the operators ¢° work only on the first spin symbol—that is,
on the electron spin.

Next we define the corresponding operator “sigma proton” for the proton
spin. Its three components %, o}, o} act in the same way as ¢°, only on the
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Table 12-1
o.|+)=+1|+)
o =)= —1=)
ol +)=+1-)
ozl =)= +1+)
oyl +y=+i|l—)
oyl =)= —i|+)




proton spin. For example, if we have 0¥ acting on each of the four base states, we
get—always using Table 12-1—

o+ +) =1+ -)
o+ =)=1++)
ol—+)=1--)
o~ =)=]—+).

As you can see, it’s not very hard.

Now in the most general case we could have more complex things. For
instance, we could have products of the two operators like g;07. When we have
such a product we do first what the operator on the right says, and then do what
the other one says.f For example, we would have that

ool |+ =) =0doh |+ N =0A= |+ =)=~ |+ =)=—]——)

Note that these operators don’t do anything on pure numbers—we have used
this fact when we wroteg(—1) = (—1)ot. We say that the operators “commute”
with pure numbers, or that a number ‘“can be moved through” the operator.
You can practice by showing that the product ;07 gives the following results
for the four states:

ooy |+ )=+~ +)

ooy |+ —)y=—1— =)
o0, | — +) =+ |+ +),
ooy | — =)= —|+ =)

If we take all the possible operators, using each kind of operator only once,
there are sixteen possibilities. Yes, sixteen—provided we include also the ““unit
operator” 1. First, there are the three: o3, 05, 05. Then the three o7, 0y, o7—that
makes six. In addition, there are the nine possible products of the form o307,
which makes a total of 15. And there’s the unit operator which just leaves any
state unchanged. Sixteen in all.

Now note that for a four-state system, the Hamiltonian matrix has to be
a four-by-four matrix of coefficients—it will have sixteen entries. It is easily
demonstrated that any four-by-four matrix—and, therefore, the Hamiltonian
matrix in particular—can be written as a linear combination of the sixteen double-
spin matrices corresponding to the set of operators we have just made up. There-
fore, for the interaction between a proton and an electron that involves only their
spins, we can expect that the Hamiltonian operator can be written as a linear
combination of the same 16 operators. The only question is, how?

Well, first, we know that the interaction doesn’t depend on our choice of
axes for a coordinate system. If there is no external disturbance—like a magnetic
field—to determine a unique direction in space, the Hamiltonian can’t depend on
our choice of the direction of the x-, y-, and z-axes. That means that the
Hamiltonian can’t have a term like o all by itself. It would be ridiculous, because
then somebody with a different coordinate system would get different results.

The only possibilities are a term with the unit matrix, say a constant a (times
1), and some combination of the sigmas that doesn’t depend on the coordinates—
some “invariant” combination. The only scalar invariant combination of two
vectors is the dot product, which for our ¢’s is

e p

o o = gl + ofo, + 0%, (12.4)
This operator is invariant with respect to any rotation of the coordinate system.
1 For these particular operators, you will notice it turns out that the sequence of the

operators doesn’t matter.
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So the only possibility for a Hamiltonian with the proper symmetry in space is a
constant times the unit matrix plus a constant times this dot product, say,

H = E,+ Ac® o (12.5)

That’s our Hamiltonian. It’s the only thing that it can be, by the symmetry of
space, so long as there is no external field. The constant term doesn’t tell us much;
it just depends on the level we choose to measure energies from. We may just
as well take E, = 0. The second term tells us all we need to know to find the
level splitting of the hydrogen.

If you want to, you can think of the Hamiltonian in a different way. If there
are two magnets near each other with magnetic moments . and g, the mutual
energy will depend on p, - u—among other things. And, you ‘remember, we
found that the classical thing we call u. appears in quantum mechanics as ucoe.
Similarly, what appears classically as u,, will usually turn out in quantum mechanics
to be ppop, (Where u,, is the magnetic moment of the proton, which is about 1000
times smaller than ., and has the opposite sign). So Eq. (12.5) says that the
interaction energy is like the interaction between two magnets—only not quite,
because the interaction of the two magnets depends on the radial distance between
them. But Eq. (12.5) could be—and, in fact, is—some kind of an average inter-
action. The electron is moving all around inside the atom, and our Hamiltonian
gives only the average interaction energy. All it says is that for a prescribed ar-
rangement in space for the electron and proton there is an energy proportional
to the cosine of the angle between the two magnetic moments, speaking classically.
Such a classical qualitative picture may help you to understand where it comes
from, but the important thing is that Eq. (12.5) is the correct quantum mechanical
formula.

The order of magnitude of the classical interaction between two magnets
would be the product of the two magnetic moments divided by the cube of the
distance between them. The distance between the electron and the proton in the
hydrogen atom is, speaking roughly, one half an atomic radius, or 0.5 angstrom.
It is, therefore, possible to make a crude estimate that the constant A should be
about equal to the product of the two magnetic moments i, and u, divided by
the cube of 1/2 angstrom. Such an estimate gives a number in the right ball park.
It turns out that 4 can be calculated accurately once you understand the complete
quantum theory of the hydrogen atom—which we so far do not. It has, in fact,
been calculated to an accuracy of about 30 parts in one million. So, unlike the
flip-flop constant A4 of the ammonia molecule, which couldn’t be calculated at
all well by a theory, our constant A for the hydrogen can be calculated from a more
detailed theory. But never mind, we will for our present purposes think of the A4
as a number which could be determined by experiment, and analyze the physics
of the situation.

Taking the Hamiltonian of Eq. (12.5), we can use it with the equation

inCi = Y, HiiC; (12.6)
J

to find out what the spin interactions do to the energy levels. To do that, we need
to work out the sixteen matrix elements H;; = (i | H|j) corresponding to each
pair of the four base states in (12.1).

We begin by working out what A |j) is for each of the four base states.
For example,

A+ +) = As- " |+ +) = Aloios + ojoy + ofoz} |+ +).  (12.7)

Using the method we described a little earlier—it’s easy if you have memorized
Table 12-1—we find what each pair of o’s does on | + +). The answer is

ooz |+ +)=+1-—-)
ooy |+ +)=—1—-) (12.8)

ol [+ +) =+ [+ +).
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Table 12-2

Spin operators for the hydrogen atom

0305 | + +) =
0200 |+ ~) =
oion | — +) =

ooz |- =) =

ooy |+ +) =
ooyl + =) =
o0y | — +) =
ooy — =) =
0y |+ +) =
oy |+ =) =
005 — +) =

o0t = =) =

+1= =)
+1- 4
+ 1+ =)
+14+ +)

—1- =)
+]= +)
1+ -)
— [+ +)

++ +)
-+ =
-I=-+
+1= =)

So (12.7) becomes

A+ +)=4{- =) == =) +[++} =4[+ +). (129
Since our four base states aré all orthogonal, that gives us immediately that

(++H|++)= A+ + |+ +) =4,
(+ = |H[+ +)= 4+ -+ +) =0,
(= +[H|++)=A—-+]|+ +)=0,
(= —|H|+ +)=4(-—-|++)=0.

(12.10)

Remembering that {j| H | i) = (i | H|j)*, we can already write down the differ-
ential equation for the amplitudes C;:

ihC,

H,,Cy + Hy3Co + H 3C3 + H4Cy
or
iCy = AC,. a2.11)

That’s alll We get only the one term.

Now to get the rest of the Hamiltonian equations we have to crank through
the same procedure for H operating on the other states. First, we will let you
practice by checking out all of the sigma products we have written down in Table
12-2. Then we can use them to get:

A+ =)=A402|—-+)= |+ =),
Al —+)=A42|+ =) —|— ), (12.12)
Hl— —-)=4|- -)

Then, multiplying each one in turn on the left by all the other state vectors, we
get the following Hamiltonian matrix, H;;:

ifg4 0 0 0

H;; = 0 —4 24 0 (12.13)
0 24 -4 0
0 0 0 4

It means, of course, nothing more than that our differential equations for the four
amplitudes C; are

ihC, = ACy,

ihCy = —AC, + 2ACs, (12.1%)
ihCy = 2AC, — ACj,

ihCy = AC,.

Before solving these equations we can’t resist telling you about a clever
rule due to Dirac—it will make you feel that you are really advanced—although
we don’t need it for our work. We have—from the equations (12.9) and (12.12)—
that

o aP |+ +) = |+ +),

|+ =)=2{—+)—|+ —) (12.15)
| —+)=2|+ )~ |- +)
a o= =) = |- -
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Look, said Dirac, I can also write the first and last equations as

oo |+ +) = 2|+ +) = |+ +),
o o?| = =) =2]= =)= |~ ~);

then they are all quite similar. Now I invent a new operator, which I will call
Py exch and which I define to have the following properties:t

Pepin oxch | + +) = | + +);
Popin exen | + =) = | — +),
Popinexch | — +) = |+ =),
Pugin exeh | = =) = | — =).

All the operator does is interchange the spin directions of the two particles. Then
I can write the whole set of equations in (12.15) as a simple operator equation:

6° 6” = 2Pgin exeh — L. (12.16)

That’s the formula of Dirac. His “spin exchange operator” gives a handy
rule for figuring out ¢°- 6®. (You see, you can do everything now. The gates
are opern.)

12-3 The energy levels

Now we are ready to work out the energy levels of the ground state of hydro-
gen by solving the Hamiltonian equations (12.14). We want to find the energies
of the stationary states. This means that we want to find those special states
| ¢) for which each amplitude C; = (i |¥) in the set belonging to | ¢) has the
same time dependence—namely, e . Then the state will have the energy E = #w.
So we want a set for which

C; = ape'~iME (12.17)

where the four coefficients a; are independent of time. To see whether we can
get such amplitudes, we substitute (12.17) into Eq. (12.14) and see what happens.
Each ih dC/dt in Eq. (12.14) turns into EC, and—after cancelling out the common
exponential factor—each C becomes an a; we get

Eal = Aal,
FEay, = —Aas + 24ag,
(12.18)
Ea3 = 2A£12 - Aaa,
Ea.; = Aa4,

which we have to solve for ay, a,, as, and a,. Isn’t it nice that the first equation is
independent of the rest—that means we can see one solution right away. If we
choose E = A,

a1=l, a2=a3=a4=0,

gives a solution. (Of course, taking all the a’s equal to zero also gives a solution,
but that’s no state at all!) Let’s call our first solution the state | 7):]

| I) = |1) = |+ +). (12.19)
Its energy is
E; = A

1 This operator is now called the “Pauli spin exchange operator.”
I The state is really | I)e~(/PE1¢; but, as usual we will identify the states by the con-
stant vectors which are equal to the complete vectors at ¢ = 0.
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Fig. 12-2. Energy-level diagram for
the ground state of atomic hydrogen.

With that clue you can immediately see another solution from the last equation
in (12.18):
a1=az=a3=0, a4=1,

E = 4.

We'll call that solution state | IT):

[ 1) = |4) = |- —), (12.20)
Eir = A

Now it gets a little harder; the two equations left in (12.18) are mixed up.
But we’ve done it all before. Adding the two, we get

E(az + a3) = A(a2 + (13). (12.21)
Subtracting, we have
E(ay — ag) = —3A(az — aj). (12.22)

By inspection—and remembering ammonia—we sec that there are two solutions:

as = ds, E= 4
and (12.23)
ays = —dAag, E = -3A4.

They are mixtures of | 2) and | 3). Calling these states | /I) and | IV’), and putting
in a factor 1/4/2 to make the states properly normalized, we have

L

1

| 1) = (2+I3)=——72(+=)+[—+),

V2 V2 (12.24)
Enr =4

and

1 1
[ V)= —(2)= |3 =—72(+—)—|—+)

V2 V2 (12.25)
Ervy = —3A4.

We have found four stationary states and their energies. Notice, incidentally,
that our four states are orthogonal, so they also can be used for base states if
desired. Our problem is completely solved.

Three of the states have the energy 4, and the last has the energy —34.
The average is zero-—which means that when we took £, = 0 in Eq. (12.5), we
were choosing to measure all the energies from the average energy. We can draw
the energy-level diagram for the ground state of hydrogen as shown in Fig. 12-2.

Now the difference in energy between state | V) and any one of the others
is 44. An atom which happens to have gotten into state | 7) could fall from there
to state | IV) and emit light. Not optical light, because the energy is so tiny—it
would emit a microwave quantum. Or, if we shine microwaves on hydrogen gas,
we will find an absorption of energy as the atoms in state | I¥) pick up energy and
go into one of the upper states—but only at the frequency w = 44/f. This
frequency has been measured experimentally; the best result, obtained very
recently,t is

f = w/2m = (1,420,405,751.800 = 0.028) cycles per second. (12.26)

The error is only two parts in 100 billion! Probably no basic physical quantity is
measured better than that—it’s one of the most remarkably accurate measurements
in physics. The theorists were very happy that they could compute the energy to
an accuracy of 3 parts in 105, but in the meantime it has been measured to 2 parts in
10''—a million times more accurate than the theory. So the experimenters are

t Crampton, Kleppner, and Ramsey; Physical Review Letters, Vol. 11, page 338 (1963).
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way ahead of the theorists. In the theory of the ground state of the hydrogen atom
you are as good as anybody. You, too, can just take your value of A from experi-
ment—that’s what everybody has to do in the end.

You have probably heard before about the “21-centimeter line” of hydrogen.
That’s the wavelength of the 1420 megacycle spectral line between the hyperfine
states. Radiation of this wavelength is emitted or absorbed by the atomic hydrogen
gas in the galaxies. So with radio telescopes tuned in to 21-cm waves (or 1420
megacycles approximately) we can observe the velocities and the location of con-
centrations of atomic hydrogen gas. By measuring the intensity, we can estimate
the amount of hydrogen. By measuring the frequency shift due to the Doppler
effect, we can find out about the motion of the gas in the galaxy. That is one of
the big programs of radio astronomy. So now we are talking about something
that’s very real—it is not an artificial problem.

12-4 The Zeeman splitting

Although we have finished the problem of finding the energy levels of the
hydrogen ground state, we would like to study this interesting system some more.
In order to say anything more about it—for instance, in order to calculate the
rate at which the hydrogen atom absorbs or emits radio waves at 21 centimeters—
we have to know what happens when the atom is disturbed. We have to do as we
did for the ammonia molecule—after we found the energy levels we went on and
studied what happened when the molecule was in an electric field. We were then
able to figure out the effects from the electric field in a radio wave. For the hydro-
gen atom, the electric field does nothing to the levels, except to move them all by
some constant amount proportional to the square of the field—which is not of
any interest because that won’t change the energy differences. It is now the
magnetic field which is important. So the next step is to write the Hamiltonian
for a more complicated situation in which the atom sits in an external magnetic
field.

What, then, is the Hamiltonian? We’ll just tell you the answer, because we
can’t give you any “proof”’ except to say that this is the way the atom works.

The Hamiltonian is

H = A(c®" 6") — peo® B — u,s® - B. (12.27)

It now consists of three parts. The first term 4¢° - ¢” represents the magnetic
interaction between the electron and the proton—it is the same one that would
be there if there were no magnetic field. This is the term we have already had;
and the influence of the magnetic field on the constant A4 is negligible. The effect
of the external magnetic field shows up in the last two terms. The second term,
—ueo® - B, is the energy the electron would have in the magnetic field if it were
there alone.f In the same way, the last term —u,e” - B, would have been the
energy of a proton alone. Classically, the energy of the two of them together would
be the sum of the two, and that works also quantum mechanically. In a magnetic
field, the energy of interaction due to the magnetic field is just the sum of the energy
of interaction of the electron with the external field, and of the proton with the
field—both expressed in terms of the sigma operators. In quantum mechanics
these terms are not really the energies, but thinking of the classical formulas for
the energy is a way of remembering the rules for writing down the Hamiltonian.
Anyway, the correct Hamiltonian is Eq. (12.27).

Now we have to go back to the beginning and do the problem all over again.
Much of the work is, however, done—we need only to add the effects of the new
terms. Let’s take a constant magnetic field B in the z-direction. Then we have to

t Remember that classically U = —pu - B, so the energy is lowest when the moment
is along the field. For positive particles, the magnetic moment is parallel to the spin and
for negative particles it is opposite. So in Eq. (12.27), u, is a positive number, but y, is
*a negative number,
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add to our Hamiltonian operator A the two new pieces—which we can call A’:
H = —(ueos + ppod)B.
Using Table 12-1, we get right away that

|+ +) = —(o + w)B| + +),
H |+ =)= —(u — w)B|+ =),
A= +) = —(—pe + pp)B| — +),
H | = =)= (4 + mp)B| — —).

(12.28)

How very convenient! The H’ operating on each state just gives a number times
that state. The matrix (i | H' | j) has, therefore, only diagonal elements—we can
just add the coefficients in (12.28) to the corresponding diagonal terms of (12.13),
and the Hamiltonian equations of (12.14) become

hdC/dt = {4 — (. + pp)B}Cy,

hdC/dt = — {4 4+ (u. — pp)B}Cy + 2A4Cs,
hdCy/dt = 24Cy — {A — (ue — pp)B}Cy,
hdCy/dt = {A + (ue + pp)B} Cy.

(12.29)

The form of the equations is not different—only the coefficients. So long
as B doesn’t vary with time, we can continue as we did before. Substituting
Ci = ae™ME! we get—as a modification of (12.18)—

Eay = A {— (ue + uy)B}ay,

Eay; = —{A4 + (ue — pp)Blas + 24a,,
Eaz = 24a; — {4 — (ue — pp)B}as,
Ea; = {A + (ue + p,)B}as.

(12.30)

Fortunately, the first and fourth equations are still independent of the rest, so the
same technique works again.
One solution is the state | /) for whicha; = 1,a, = a3 = a, = 0, or

D =11)=|4++),
with (12.31)

Er =4 — (/"e + :U'D)B-
Another is

[ 1) = | 4) = |~ =),
with (12.32)
Err = A+ (ue + up)B.

A little more work is involved for the remaining two equations, because the
coefficients of a, and a5 are no longer equal. But they are just like the pair we had
for the ammonia molecule. Looking back at Eq. (9.20), we can make the following
analogy (remembering that the labels 1 and 2 there correspond to 2 and 3 here):

Hy— —4 - (4o — .M]))B’
Hys — 24,
Hyy — 24,
Hys — —A4 4+ (he — mp)B.

(12.33)

The energies are then given by (9.25), which was

. — 2 o
E-fut Hu \/(H“ SRLEOSENY Y Y (12.34)

2
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Making the substitutions from (12.33), the energy formula becomes

E= —4 = (o — i, 05 T 412

Although in Chapter 9 we used to call these energies Ey and E;;, and we are in
this problem calling them E;;; and E;y,

EIII A{*l + 2\/1 + (:ue - #p)sz/4A2}:
Ery = —A{1 + 2V1 + (ue — n,)2B2/44%}.

So we have found the energies of the four stationary states of a hydrogen
atom in a constant magnetic field. Let’s check our results by letting B go to zero
and seeing whether we get the same energies we had in the preceding section. You
see that we do. For B = 0, the energies E;, E;;, and Errrgoto +A4, and E;y
goes to —34. Even our labeling of the states agrees with what we called them be-
fore. When we turn on the magnetic field though, all of the energies change in a
different way. Let’s see how they go.

First, we have to remember that for the electron, Me 18 negative, and about
1000 times larger than u,—which is positive. So u, + bp and pe — up, are both
negative numbers, and nearly equal. Let’s call them —u and —pu’:

mo=—(pe + pp), @ = —(ue — pp). (12.36)

(Both x and ' are positive numbers, nearly equal to magnitude of u,—which is
about one Bohr magneton.) Then our four energies are

Er = A + uB,

Err = A — uB,
Errr = A{—1 + 2/1 + u/2B?/44%},
Erv = —A{l + V1 + u?B2/44%),

The energy E; starts at 4 and increases linearly with B—with the slope u. The
[

(12.35)

(12.37)
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Fig. 12-3. The energy levels of the ground state Fig. 12-4. Transitions between the levels of

of hydrogen in a magnetic field B.
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energy Ej; also starts at 4 but decreases linearly with increasing B—its slope is
—u. These two levels vary with B as shown in Fig. 12-3. We show also in the
figure the energies E;rr and Ery. They have a different B-dependence. For small
B, they depend quadratically on B, so they start out with horizontal slopes. Then
they begin to curve, and for large B they approach straight lines with slopes
=y’ which are nearly the same as the slopes of E; and Epj.

The shift of the energy levels of an atom due to a magnetic field is called the
Zeeman effect. We say that the curves in Fig. 12-3 show the Zeeman splitting of
the ground state of hydrogen. When there is no magnetic field, we get just one
spectral line from the hyperfine structure of hydrogen. The transitions between
state | IV) and any one of the others occurs with the absorption or emission of a
photon whose frequency 1420 megacycles is 1/h times the energy difference 44.
When the atom is in a magnetic field B, however, there are many more lines.
There can be transitions between any two of the four states. So if we have atoms
in all four states, energy can be absorbed—or emitted—in any one of the six
transitions shown by the vertical arrows in Fig. 12-4. Many of these transitions
can be observed by the Rabi molecular beam technique we described in Volume 11,
Section 35-3 (see Appendix).

What makes the transitions go? The transitions will occur if you apply a small
disturbing magnetic field that varies with time (in addition to the steady strong
field B). It’s just as we saw for a varying electric field on the ammonia molecule.
Only here, it is the magnetic field which couples with the magnetic moments and
does the trick. But the theory follows through in the same way that we worked
it out for the ammonia. The theory is the simplest if you take a perturbing mag-
netic field that rotates in the xy-plane—although any horizontal oscillating field
will do. When you put in this perturbing field as an additional term in the Ham-
iltonian, you get solutions in which the amplitudes vary with time—as we found
for the ammonia molecule. So you can calculate easily and accurately the prob-
ability of a transition from one state to another. And you find that it all agrees
with experiment.

12-5 The states in a magnetic field

We would like now to discuss the shapes of the curves in Fig. 12-3. In the
first place, the energies for large fields are easy to understand, and rather interesting.
For B large enough (namely for uB/-4 >> 1) we can neglect the 1 in the formulas
of (12.37). The four energies become

Er = A + uB, Err = A — uB,

(12.38)
Erpr= —A + w'B, Eijv = —A — WB.

These are the equations of the four straight lines in Fig. 12-3. We can understand
these energies physically in the following way. The nature of the stationary states
in a zero field is determined completely by the interaction of the two magnetic
moments. The mixtures of the base states | + —) and | — +-) in the stationary
states | ZITy and | IV) are due to this interaction. In large external fields, however,
the proton and electron will be influenced hardly at all by the field of the other;
each will act as if it were alone in the external field. Then—as we have seen many
times—the electron spin will be either parallel to or opposite to the external
magnetic field.

Suppose the electron spin is “up”—that is, along the field; its energy will be
—u.B. The proton can still be either way. If the proton spin is also *‘up,” its
energy is —u,B. The sum of the two is —(u. + u,)B = pB. That is just what
we find for E;—which is fine, because we are describing the state | + +) = | I).
There is still the small additional term A (now uB >> A) which represents the
interaction energy of the proton and electron when their spins are parallel. (We
originally took A4 as positive because the theory we spoke of says it should be,
and experimentally it is indeed so.) On the other hand, the proton can have its
spin down. Then its energy in the external field goes to —u;,B, so it and the electron
have the energy —(u. — up)B = w'B. And the interaction energy becomes —A.
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The sum is just the energy Errin (12.38). So the state | III) must for large fields
become the state | + —).

Suppose now the electron spin is “down.” Its energy in the external field is
ueB. If the proton is also “down,” the two together have the energy (ue + up)B =
uB, plus the interaction energy 4A—since their spins are parallel. That makes just
the energy E;r in (12.38) and corresponds to the state | — —) = | II)—which is
nice. Finally if the electron is “down” and the proton is “up,” we get the energy
(ke — up)B — A (minus A for the interaction because the spins are opposite)
which is just E;y. And the state corresponds to | — +).

“But, wait a moment!”, you are probably saying, “The states | III) and
| IV are not the states | + — ) and | — +); they are mixtures of the two.” Well,
only slightly. They are indeed mixtures for B = 0, but we have not yet figured
out what they are for large B. When we used the analogies of (12.33) in our formu-
las of Chapter 9 to get the energies of the stationary states, we could also have
taken the amplitudes that go with them. They come from Eq. (9.23), which is

as E — Hy,

a3 Hy
The ratio aq/ag is, of course, just C5/Cs. Plugging in the analogous quantities
from (12.33), we get

C2_E+A_(V'e—l‘p)B
Cs 24

or
C, E+ A+ wB
iy (12.39)

where for E we are to use the appropriate energy—either Erry or Ery. For instance,

for state | III) we have
(?3_) ~ KB,
Cs/ur - 4

So for large B the state | IIT) has Cy >> Cj; the state becomes almost completely
the state | 2) = | 4+ —). Similarly, if we put Ery into (12.39) we get (C2/C3)rv
«1; for high fields state | IV) becomes just the state | 3) = | — +). You see that
the coefficients in the linear combinations of our base states which make up the
stationary states depend on B. The state we call | JII) is a 50-50 mixture of | + —)
and | — +) at very low fields, but shifts completely over to | + —) at high fields.
Similarly, the state | IV), which at low fields is also a 50-50 mixture (with opposite
signs) of | + —) and | — +), goes over into the state | — 4 ) when the spins are
uncoupled by a strong external field.

We would also like to call your attention particularly to what happens at
very low magnetic fields. There is one energy—at —3A4—which does not change
when you turn on a small magnetic field. And there is another energy—at +A4—
which splits into three different energy levels when you turn on a small magnetic
field. For weak fields the energies vary with B as shown in Fig. 12-5. Suppose
that we have somehow selected a bunch of hydrogen atoms which all have the
energy —3A4. If we put them through a Stern-Gerlach experiment—with fields
that are not too strong—we would find that they just go straight through. (Since
their energy doesn’t depend on B, there is—according to the principle of virtual
work—no force on them in a magnetic field gradient.) Suppose, on the other hand,
we were to select a bunch of atoms with the energy + A4, and put them through
a Stern-Gerlach apparatus, say an S apparatus. (Again the fields in the apparatus
should not be so great that they disrupt the insides of the atom, by which we mean
a field small enough that the energies vary linearly with B.) We would find three
beams. The states | I) and | II) get opposite forces—their energies vary linearly
with B with the slopes =u so the forces are like those on a dipole with u, = =u;
but the state | III) goes straight through. So we are right back in Chapter 5.
A hydrogen atom with the energy + A is a spin-one particle. This energy state is a
“particle” for which j = 1, and it can be described—with respect to some set of
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Table 12-3
Zero field states of the hydrogen atom

State|j,m) | j | m | Our notation
[ 1, +1) 1{+1] |D=]|+S)
|1,0) 1| oljmn=10s)
(1,=1) (1] =1|]I)=]-5)
| 0,0) oy ollmw)

axes in space—in terms of the base states | +S), | 0 S), and | —S) we used in Chap-
ter 5. On the other hand, when a hydrogen atom has the energy —34, it is a spin-
zero particle. (Remember, what we are saying is only strictly true for infinitesimal
magnetic fields.) So we can group the states of hydrogen in zero magnetic field
this way:

D=1+ +) +5)
i = L _>\J/’§| = B i1 {]08) (12.41)
tI) = | — —) | —S)
Ly = L _>\;§| = *) spino0. (12.42)

We have said in Chapter 35 of Volume I1 (Appendix) that for any particle its
component of angular momentum along any axis can have only certain values
always # apart. The z-component of angular momentum J, can be jA, (j — 1),
(j — 24, ..., (—j)h, where j is the spin of the particle (which can be an integer or
half-integer). Although we neglected to say so at the time, people usually write

J, = mh, (12.43)

where m stands for one of the numbers j,j — 1,/ — 2,..., —j. You will, there-
fore, see people in books label the four ground states of hydrogen by the so-called
quantum numbers j and m [often called the “total angular momentum quantum
number” (j), and “magnetic quantum number” (m)]. Then, instead of our state
symbols | I), | II), and so on, they will write a state as | j, m). So they would write
our little table of states for zero field in (12.41) and (12.42) as shown in Table 12-3.
It’s not new physics, it’s all just a matter of notation.

12-6 The projection matrix for spin one }

We would like now to use our knowledge of the hydrogen atom to do some-
thing special. We discussed in Chapter 5 that a particle of spin one which was in
one of the base states (4, 0, or —) with respect to a Stern-Gerlach apparatus of a
particular orientation—say an S apparatus—would have a certain amplitude to
be in each of the three states with respect to a T apparatus with a different orienta-
tion in space. There are nine such amplitudes (T | iS) which make up the pro-
jection matrix. In Section 5-7 we gave without proof the terms of this matrix
for various orientations of T with respect to S. Now we will show you one way
they can be derived.

In the hydrogen atom we have found a spin-one system which is made up
of two spin one-half particles. We have already worked out in Chapter 6 how
to transform the spin one-half amplitudes. We can use this information to calculate
the transformation for spin one. This is the way it works: We have a system—a
hydrogen atom with the energy +A—which has spin one. Suppose we run it
through a Stern-Gerlach filter S, so that we know it is in one of the base states
with respect to S, say | +S). What is the amplitude that it will be in one of the
base states, say | +7), with respect to the 7 apparatus? If we call the coordinate
system of the S apparatus the x, y, z system, the | 4-S) state is what we have been
calling the state | + ). But suppose another guy took his z-axis along the axis
of T. He will be referring his states to what we will call the x’, y/, z’ frame. His
“up” and *“‘down” states for the electron and proton would be different from ours.
His “plus-plus” state—which we can write | +’ +’), referring to the “prime”
frame—is the | +7') state of the spin-one particle. What we want is (47 | +S)
which is just another way of writing the amplitude (+’ +’ | + +).

t Those who chose to jump over Chapter 6 should skip this section also.
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We can find the amplitude (+’ +' | + +) in the following way. In our frame
the electron in the | + ) state has its spin “up”. That means that it has some
amplitude {4+’ | +). of being “up” in Ais frame, and some amplitude (—' | +).
of being “down” in that frame. Similarly, the profon in the | + +) state has
spin “up” in our frame and the amplitudes (4’| +), and (=’ | +), of having
spin “up” or spin “down” in the “prime” frame. Since we are talking 2bout two
distinct particles, the amplitude that borh particles will be “up” rogether in his
frame is the product of the two amplitudes,

(+ 1+ +) = F )l [+ (12.44)

We have put the subscripts e and p on the amplitudes (+’ | +) to make it clear
what we were doing. But they are both just the transformation amplitudes for a
spin one-half particle, so they are really identical numbers. They are, in fact, just
the amplitude we have called (471 +S) in Chapter 6, and which we listed in
the tables at the end of that chapter.

Now, however, we are about to get into trouble with notation. We have to
be able to distinguish the amplitude (+7 | +S) for a spin one-half particle from
what we have also called (+T | +S) for a spin-one particle—yet they are completely
different! We hope it won’t be too confusing, but for the moment at least, we will
have to use some different symbols for the spin one-half amplitudes. To help
you keep things straight, we summarize the new notation in Table 12-4. We will
continue to use the notation | +S), | 0 S), and | —S) for the states of a spin-one
particle.

With our new notation. Eq. (12.44) becomes simply

(+ +' 1+ +) = a*

and this is just the spin-one amplitude (+7 | +.S). Now, let’s suppose, for in-
stance, that the other guy’s coordinate frame—that is, the 7, or *“‘primed,” appara-
tus—is just rotated with respect to our z-axis by the angle ¢; then from Table 6-2,

a= (+]+) = e¥?
So from (12.44) we have that the spin-one amplitude is
(+T+S8) = (+" +' [+ +) = (¥/H)? = €™, (12.45)

You can see how it goes.

Now we will work through the general case for all the states. If the proton
and electron are both “up” in our frame—the S-frame—the amplitudes that it
will be in any one of the four possible states in the other guy’s frame—the 7-frame—
are

1+ ) = R 4 = @
H ="+ +) = (' +)l="|+), = ab,
(= H [+ ) = (= L |+, = ba,
(=" ="+ +) = =" | +)l=" | +)p = b

(12.46)

We can, then, write the state | + +) as the following linear combination:
|+ +) = a® |+ +) + ab{|+" ') + | ="+ + b2 =" ="). (1247

Now we notice that | +’ +) is the state | +7), that {{ +' —') + [ =" +")} is
just \/2 times the state | 0 T)—see (12.41)—and that | — —’) = | —T). In other
words, Eq. (12.47) can be rewritten as

| +8) = a®| +T) + V2ab |0T) + b*| =T). (12.43)

In a similar way you can easily show that

| —S) = | +T) + V2ed|0T) + d*| —T). (12.49)
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Table 12-4

Spin one-half amplitudes

This chapter  Chapter 6
a= (+'1+)  (+T[+S)
b= (=4 (~TI+S)
c= (1= (HTI-5)
d=(='|-) (-T|-5)




For | 0 S) it’s a little more complicated, because

1
[08) = — {|+ =)+ |-+
) 7 {l | i
But we can express each of the states | + —) and | — +) in terms of the “prime”

states and take the sum. That is,

[+ —) = ac|+ +) 4+ ad|+" =) + bc| ~"+') + bd| " —") (12.50)

and
| —+) =ac|+ +') + bc|+' ~') +ad| — +') + bd| — —’). (12.51)
Taking 1/4/2 times the sum, we get
108) = Zae i 40+ SEE b~ | =40+ b= )
It follows that
[0S) = vZac| +T) + (ad + be) | 0T) + /2 bd | —T). (12.52)

We have now all of the amplitudes we wanted. The coefficients of Egs.
(12.48), (12.49), and (12.52) are the matrix elements (j7 | iS). Let’s pull them all
together:

jTl a? \/f ac c?
(T 1is) = V2ab  ad + be  N2ed (12.53)
b* V2 bd d*

We have expressed the spin-one transformation in terms of the spin one-half
amplitudes a, b, ¢, and d.

For instance, if the T-frame is rotated with respect to S by the angle « about
the y-axis—as in Fig. 5-6—the amplitudes in Table 12-4 are just the matrix
elements of R,(«) in Table 6-2.

[+2 . a
a = cosi, b = -smi,
(12.59)
= 1'ng d = cos—
c=Ss > 7

Using these in (12.53), we get the formulas of (5.38), which we gave there without
proof.

What ever happened to the state | IV)?! Well, it is a spin-zero system, so it
has only one state—it is the same in all coordinate systems. We can check that
everything works out by taking the difference of Eq. (12.50) and (12.51); we get
that

|+ =)= = +) = @ — bl + == | — +).

But (ad — bc) is the determinant of the spin one-half matrix, and so is equal to 1.
We get that
[ vy = | 1IV)

for any relative orientation of the two coordinate frames.
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13

Propagation in a Crystal Lattice

13-1 States for an electron in a one-dimensional lattice

You would, at first sight, think that a low-energy electron would have great
difficulty passing through a solid crystal. The atoms are packed together with
their centers only a few angstroms apart, and the etfective diameter of the atom
for electron scattering is roughly an angstrom or so. That is, the atoms are large,
relative to their spacing, so that you would expect the mean free path between
collisions to be of the order of a few angstroms—which 1s practically nothing.
You would expect the electron to bump into one atom or another almost imme-
diately. Nevertheless, it is a ubiquitous phenomenon of nature that if the lattice
is perfect, the electrons are able to travel through the crystal smoothly and easily—
almost as 1f they were in a vacuum. This strange fact is what lets metals conduct
electricity so easily; 1t has also permitted the development of many practical
devices. It is, for instance, what makes it possible for a transistor to imitate the
radio tube. In a radio tube electrons move freely through a vacuum, while in the
transistor they move freely through a crystal lattice. The machinery behind the
behavior of a transistor will be described in this chapter; the next one will describe
the application of these principles in various practical devices.

The conduction of electrons in a crystal is one example of a very common
phenomenon. Not only can electrons travel through crystals, but other “things” like
atomic excitations can also travel in a similar manner. So the phenomenon which
we want to discuss appears in many ways in the study of the physics of the solid
state.

You will remember that we have discussed many examples of two-state sys-
tems. Let’s now think of an electron which can be in either one of two positions,
in each of which it is in the same kind of environment. Let’s also suppose that
there is a certain amplitude to go from one position to the other, and, of course,
the same amplitude to go back, just as we have discussed for the hydrogen molec-
ular ion in Section 10-1. The laws of quantum mechanics then give the following
results. There are two possible states of definite energy for the electron. Each
state can be described by the amplitude for the electron to be in each of the two
basic positions. In either of the definite-energy states, the magnitudes of these
two amplitudes are constant in time, and the phases vary in time with the same
frequency. On the other hand, if we start the electron in one position, it will later
have moved to the other, and still later will swing back again to the first position.
The amplitude is analogous to the motions of two coupled pendulums.

Now consider a perfect crystal lattice in which we imagine that an electron
can be situated in a kind of ““pit” at one particular atom and with some particular
energy. Suppose also that the electron has some amplitude to move into a different
pit at one of the nearby atoms. It is something like the two-state system—but with
an additional complication. When the electron arrives at the neighboring atom,
it can afterward move on to still another position as well as return to its starting
point. Now we have a situation analogous not to two coupled pendulums, but to
an infinite number of pendulums all coupled together. It is something like what
you see in one of those machines—made with a long row of bars mounted on a
torsion wire—that is used in first-year physics to demonstrate wave propagation.

If you have a harmonic oscillator which is coupled to another harmonic
oscillator, and that one to another, and so on . . ., and if you start an irregularity
in one place, the irregularity will propagate as a wave along the line. The same
situation exists if you place an electron at one atom of a long chain of atoms.
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Fig. 13-1. The base states of an
electron in a one-dimensional crystal.

Usually, the simplest way of analyzing the mechanical problem is not to think
in terms of what happens if a pulse 1s started at a definite place, but rather in
terms of steady-wave solutions. There exist certain patterns of displacements
which propagate through the crystal as a wave of a single, fixed frequency. Now
the same thing happens with the electron—and for the same reason, because 1t’s
described in quantum mechanics by similar equations.

You must appreciate one thing, however; the amplitude for the electron to
be at a place is an amplitude, not a probability. If the electron were simply leaking
from one place to another, like water going through a hole, the behavior would
be completely different. For example, if we had two tanks of water connected
by a tube to permit some leakage from one to the other, then the levels would
approach each other exponentially. But for the electron, what happens is amplitude
leakage and not just a plain probability leakage. And it’s a characteristic of the
imaginary term—the i in the differential equations of quantum mechanics—which
changes the exponential solution to an oscillatory solution. What happens then
is quite different from the leakage between interconnected tanks.

We want now to analyze quantitatively the quantum mechanical situation.
Imagine a one-dimensional system made of a long line of atoms as shown in
Fig. 13-1(a). (A crystal is, of course, three-dimensional but the physics 1s very
much the same; once you understand the one-dimensional case you will be able
to understand what happens in three dimensions.) Next, we want to see what
happens if we put a single electron on this line of atoms. Of course, in a real crystal
there are already millions of electrons. But most of them (nearly all for an in-
sulating crystal) take up positions in some pattern of motion each around its own
atom—and everything is quite stationary. However, we now want to think about
what happens if we put an extra electron in. We will not consider what the other
ones are doing because we suppose that to change their motion involves a lot of
excitation energy. We are going to add an electron as if to produce one shightly
bound negative ion. In watching what the one extra electron'does we are making
an approximation which disregards the mechanics of the inside workings of the
atoms.

Of course the electron could then move to another atom, transferring the
negative ion to another place. We will suppose that just as in the case of an
electron jumping between two protons, the electron can jump from one atom to
the neighbor on either side with a certain amplitude.

Now how do we describe such a system? What will be reasonable base states?
If you remember what we did when we had only two possible positions, you can
guess how it will go. Suppose that in our line of atoms the spacings are all equal;
and that we number the atoms in sequence, as shown in Fig. 13-1(a). One of the
base states is that the electron is at atom number 6, another base state is that the
electron is at atom number 7, or at atom number 8, and so on. We can describe
the nth base state by saying that the electron is at atom number n. Let’s say that
this is the base state | n). Figure 13-1 shows what we mean by the three base
states

ln— 1), |[n), and |n+ 1).

Using these base states, any state | ¢) of our one-dimensional crystal can be de-
scribed by giving all the amplitudes (n | ¢) that the state | ¢) is in one of the
base states—which means the amplitude that it is located at one particular atom.
Then we can write the state | ¢) as a superposition of the base states

l¢) = > [ m)n] @) (13.1)

n

Next, we are going to suppose that when the electron is at one atom, there is a
certain amplitude that it will leak to the atom on either side. And we’ll take the
simplest case for which it can only leak to the nearest neighbors—to get to the
next-nearest neighbor, it has to go in two steps. We’ll take that the amplitudes for
the electron jump from one atom to the next is i4/# (per unit time).
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For the moment we would like to write the amplitude (n | ¢) to be on the
nth atom as C,. Then Eq. (13.1) will be written

lo) =D | n)Cy. (13.2)

If we knew each of the amplitudes C, at a given moment, we could take their
absolute squares and get the probability that you would find the electron if you
looked at atom » at that time.

What will the situation be at some later time? By analogy with the two-state
systems we have studied, we would propose that the Hamiltonian equations for
this system should be made up of equations like this:

4 450

g = EoGa() — AG1(1) — AC (). (13.3)

The first coefficient on the right, E, is, physically, the energy the electron
would have if 1t couldn’t leak away from one of the atoms. (It doesn’t matter
what we call Ey; as we have seen many times, it represents really nothing but our
choice of the zero of energy.) The next term represents the amplitude per unit
time that the electron is leaking into the nth pit from the (n + 1)st pit; and the
last term is the amplitude for leakage from the (n — 1)st pit. As usual, we’ll
assume that A is a constant (independent of 7).

For a full description of the behavior of any state | ¢), we would have one
equation like (13.3) for every one of the amplitudes C,. Since we want to consider
a crystal with a very large number of atoms, we’ll assume that there are an in-
definitely large number of states—that the atoms go on forever in both directions.
(To do the finite case, we will have to pay special attention to what happens at the
ends.) If the number N of our base states is indefinitely large, then also our full
Hamiltonian equations are infinite in number! We’ll write down just a sample:

ih %_-l = EOC -1 ACn_z - ACn’
ih Ei% = EOCn —_ ACn_l - ACn—f—la (134)
ih dC—:;:_.l_ = EOCn+l - ACn - ACn+2;

13-2 States of definite energy

We could study many things about an electron in a lattice, but first let’s try
to find the states of definite energy. As we have seen in earlier chapters this means
that we have to find a situation in which the amplitudes all change at the same
frequency if they change with time at all. We look for solutions of the form

C, = ane*FUH, (13.5)

The complex number a, tell us about the non-time-varying part of the amplitude
to find the electron at the nth atom. If we put this trial solution into the equations
of (13.4) to test them out, we get the result

Ea, = Eya, — Aa,y — Aa,_,. (13.6)

We have an infinite number of such equations for the infinite number of unknowns
ay,—which is rather petrifying.

All we have to do is take the determinant . .. but wait! Determinants are
fine when there are 2, 3, or 4 equations. But if there are a large number—or an
infinite number—of equations, the determinants are not very convenient. We’d
better just try to solve the equations directly. First, let’s label the atoms by their
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Fig. 13-2. Variation of the real part
of C, with x,.

positions; we'll say that the atom n is at x, and the atom (n 4 1) is at x, ;. If
the atomic spacing is b—as in Fig. 13-1—we will have that x,,, = x, + b
By choosing our origin at atom zero, we can even have it that x,, = nb. We can
rewrite Eq. (13.5) as

C, = a(x,)e Y% 13.7)
and Eq. (13.6) would become
Ea(x,) = Eoa(Xp4.1) — Aa(xp41) — Aa(x,_y). (13.8)
Or, using the fact that x,, 1 = X, -+ b, we could also write
Ea(x,) = Eya(x,) — Aa(x, + b) — Aa(x,, — b). (13.9)

This equation is somewhat similar to a differential equation. It tells us that a
quantity, a(x), at one point, (x,), is related to the same physical quantity at some
neighboring points, (x, = b). (A differential equation relates the value of a func-
tion at a point to the values at infinitesimally nearby points.) Perhaps the methods
we usually use for solving differential equations will also work here, let’s try.

Linear differential equations with constant coefficients can always be solved
in terms of exponential functions. We can try the same thing here; let’s take as a
trial solution

a(x,) = e*™ (13.10)
Then Eq. (13.9) becomes

Ee™n = Eget™™ — Aent¥ — ok, (13.11)

We can now divide out the common factor e**%»; we get
E = Ey — Ae"™™® — Ae™**0, (13.12)
The last two terms are just equal to (24 cos kb), so
E = Ey; — 24 coskb. (13.13)

We have found that for any choice at all for the constant k there is a solution
whose energy is given by this equation. There are various possible energies
depending on k, and each k corresponds to a different solution. There are an
infinite number of solutions—which 1s not surprising, since we started out with
an infinite number of base states.

Let’s see what these solutions mean. For each k, the a’s are given by Eq.
(13.10). The amplitudes C, are then given by

C, = eFone=(IMEL (13.14)

where you should remember that the energy E also depends on k as given in Eq.
(13.13). The space dependence of the amplitudes is e***s. The amplitudes
oscillate as we go along from one atom to the next.

We mean that, in space, the amplitude goes as a complex oscillation—the
magnitude is the same at every atom, but the phase at a given time advances by the
amount (tkb) from one atom to the next. We can visualize what is going on by
plotting a vertical line to show just the real part at each atom as we have done in
Fig. 13-2. The envelope of these vertical lines (as shown by the broken-line curve)
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is, of course, a cosine curve. The imaginary part of C, is also an oscillating function,
but is shifted 90° in phase so that the absolute square (which is the sum of the
squares of the real and imaginary parts) is the same for all the C’s.

Thus if we pick a k, we get a stationary state of a particular energy E. And
for any such state, the electron is equally likely to be found at every atom—there
is no preference for one atom or the other. Only the phase is different for different
atoms. Also, as time goes on the phases vary. From Eq. (13.14) the real and
imaginary parts propagate along the crystal as waves—namely as the real or
imaginary parts of

gtthen— B (13.15)

The wave can travel toward positive or negative x depending on the sign we have
picked for k.

Notice that we have been assuming that the number k that we put in our
trial solution, Eq. (13.10), was a real number. We can see now why that must be
so if we have an infinite line of atoms. Suppose that k were an imaginary number,
say ik’. Then the amplitudes a, would go as e*'*», which means that the amplitude
would get larger and larger as we go toward large x’s—or toward large negative
x’s if k' is a negative number. This kind of solution would be O.K. if we were
dealing with line of atoms that ended, but cannot be a physical solution for an
infinite chain of atoms. It would give infinite amplitudes—and, therefore, infinite
probabilities—which can’t represent a real situation. Later on we will see an ex-
ample in which an imaginary k does make sense.

The relation between the energy E and the wave number k as given in Eq.
(13.13) is plotted in Fig. 13-3. As you can see from the figure, the energy can go
from (Eo — 24) at k = 0 to (Ey + 24) at k = =w/b. The graph is plotted
for positive A4; if 4 were negative, the curve would simply be inverted, but the
range would be the same. The significant result is that any energy is possible
within a certain range or “band” of energies, but no others. According to our
assumptions, if an electron in a crystal is in a stationary state, it can have no
energy other than values in this band.

According to Eq. (13.10), the smallest k’s correspond to low-energy states—
E =~ (E, — 2A4). As k increases in magnitude (toward either positive or negative
values) the energy at first increases, but then reaches a maximum at k = =7/b,
as shown in Fig. 13-3. For k’s larger than 7/b, the energy would start to decrease
again. But we do not really need to consider such values of k, because they do
not give new states—they just repeat states we already have for smaller k. We
can see that in the following way. Consider the lowest energy state for which
k = 0. The coefficient a(x,) is the same for all x,. Now we would get the same
energy for k = 2m/b. But then, using Eq. (13.10), we have that

a(xn) — e‘L'(21r/ b)z"'

However, taking x, to be at the origin, we can set x, = nb; then a(x,) becomes

a(x,) = 2™ = 1.

The state described by these a(x,) is physically the same state we got for k = 0.
It does not represent a different solution.

As another example, suppose that k were w/4b. The real part of a(x,) would
vary as shown by curve 1 in Fig. 13-4. If k were seven times larger (k = 77 /4),
the real part of a(x,) would vary as shown by curve 2 in the figure. (The complete

Re A(xp)
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cosine curves don’t mean anything, of course; all that matters 1s their values at
the pomts x,. The curves are just to help you see how things are going.) You see
that both values of k give the same amplitudes at all of the x,,’s.

The upshot 1s that we have all the possible solutions of our problem if we take
only k's in a certain Iimited range. We’ll pick the range between —/b and
-+ /b—the one shown in Fig. 13-3. In this range, the energy of the stationary
states increases uniformly with an increase in the magnitude of k.

One side remark about something you can play with. Suppose that the elec-
tron cannot only jump to the nearest neighbor with amplitude :4/4, but also has
the possibility to jump in one direct leap to the next nearest netghbor with some
other amplitude iB/A. You will find that the solution can again be written in the
form a, = e'**n—this type of solution 1s umversal You will also find that the
stationary states with wave number k have an energy equal to (E, — 24 cos kb —
2B cos 2kb). This shows that the shape of the curve of E against k is not universal,
but depends upon the particular assumptions of the problem. It 1s not always a
cosmne wave—it’s not even necessarily symmetrical about some horizontal line.
It is true, however, that the curve always repeats 1tself outside of the interval from
—m/b to w/b, so you never need to worry about other values of k.

Let’s look a Iittle more closely at what happens for small k—that is, when
the variations of the amplitudes from one x, to the next are quite slow. Suppose
we choose our zero of energy by defining £y = 24; then the minimum of the
curve in Fig. 13-3 is at the zero of energy. For small enough k, we can write that

coskb =~ 1 — k%2,
and the energy of Eq. (13.13) becomes
E = Ak*b2. (13.16)

We have that the energy of the state is proportional to the square of the wave
number which describes the spatial variations of the amplitudes C,,.

13-3 Time-dependent states

In this section we would like to discuss the behavior of states in the one-
dimensional Jattice in more detail. If the amplitude for an electron to be at x,
is C,, the probabulity of finding it there s |C,|2. For the stationary states described
by Eq. (13.12), this probability is the same for all x,, and does not change with time.
How can we represent a situation which we would describe roughly by saying an
electron of a certhin energy is localized in a certain region—so that it is more likely
to be found at one place than at some other place? We can do that by making
a superposition of several solutions like Eq. (13.12) with slightly different values
of k—and, therefore, slightly different energies. Then at ¢ = 0, at least, the ampli-
tude C, will vary with position because of the interference between the various
terms, just as one gets beats when there is a mixture of waves of different wave-
lengths (as we discussed in Chapter 48, Vol. I). So we can make up a ““wave packet”
with a predominant wave number & ¢, but with various other wave numbers near k .}

In our superposition of stationary states, the amplitudes with different ks
will represent states of slightly different energies, and, therefore, of slightly different
frequencies; the interference pattern of the total C, will, therefore, also vary with
time—there will be a pattern of “‘beats.” As we have seen in Chapter 48 of Volume
I, the peaks of the beats [the place where [C(x,)|? is large] will move along in x
as time goes on; they move with the speed we have called the “group velocity.”
We found that this group velocity was related to the variation of k with frequency by

d
Vgroup = d—(;:; (13.17)

1 Provided we do not try to make the packet too narrow.
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the same derivation would apply equally well here. An electron state which is a
“clump”—namely one for which the C, vary in space like the wave packet of
Fig. 13-5—will move along our one-dimensional “crystal” with the speed » equal
to dw/dk, where w = E/#. Using (13.16) for E, we get that

_24b®

7 k. (13.18)

P
In other words, the electrons move along with a speed proportional 1o the typical
k. Equation (13.16) then says that the energy of such an electron is proportional
to the square of its velocity—it acts hike a classical particle. So long as we look
at things on a scale gross enough that we don’t see the fine structure, our quantum
mechanical picture begins to give results like classical physics. In fact, if we solve
Eq. (13.18) for k and substitute into (13.16), we can write

E = %meff 1)2, (1319)

where m 1s a constant. The extra “energy of motion” of the electron in a packet
depends on the velocity just as for a classical particle. The constant mg—called
the “‘effective mass”—is given by

h2
Meff = 505" (13.20)
Also notice that we can write
Mepf U = hk. (13.21)

If we choose to call mg v the “momentum,” it is related to the wave number k
in the way we have described earlier for a free particle.

Don’t forget that m.; has nothing to do with the real mass of an electron.
It may be quite different—although in real crystals 1t often happens to turn out to be
the same general order of magnitude, about 2 to 20 times the free-space mass of
the electron.

We have now explained a remarkable mystery—how an electron 1n a crystal
(like an extra electron put into germanium) can ride right through the crystal and
flow perfectly freely even though it has to hit all the atoms. It does so by having
its amplitudes going p1p-pip-pip from one atom to the next, working 1ts way through
the crystal. That is how a solid can conduct electricity.

13-4 An electron in a three-dimensional lattice

Let’s look for a moment at how we could apply the same ideas to see what
happens to an electron 1n three dimensions. The results turn out to be very similar.
Suppose we have a rectangular lattice of atoms with lattice spacings of a, b, ¢ 1n
the three directions (If you want a cubic lattice, take the three spacings all equal.)
Also suppose that the amplitude to leap in the x-direction to a neighbor is (14,/4),
to leap in the yp-direction 1s (14,/#), and to leap in the z-direction 1s (14,/#). Now
how should we describe the base states? As in the one-dimensional case, one
base state is that the electron is at the atom whose locations are x, y, z, where
(x, y, z) 1s one of the lattice points. Choosing our origin at one atom, these points
are all at

X = n.a, y = nb, and zZ = n,c,

where n,, n,, n, are any three integers. Instead of using subscripts to indicate such
points, we will now just use x, y, and z, understanding that they take on only their
values at the lattice points. Thus the base state is represented by the symbol
| electron at x, y, z), and the amplitude for an electron in some state | ) to be in
this base state 1s C(x, y, z) = (electron at x, y, z | ¥).
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As before, the amplitudes C(x, y, z) may vary with time. With our assump-
tions, the Hamiltonian equations should be like this:

i SCERD _ EiCxy,2) ~ 4.+ a,3,2) — ACx — a,3,7)
— 4,C(x,y + b,z) — 4,C(x,y — b, z)
— A,C(x,y,z + ¢) — A,C(x,y,z — ¢). (13.22)

It looks rather long, but you can see where each term comes from.
Again we can try to find a stationary state in which all the C’s vary with time
in the same way. Again the solution is an exponential:

C(x,y,2) = e Btifgitharthyth.s (13.23)

If you substitute this into (13.22) you see that it works, provided that the energy
E is related to k;, ky, and k, in the following way:

E=Ey— 24,cos ka — 24, cos k,b — 24, cos k,c. (13.24)

The energy now depends on the three wave numbers &, k,, k., which, incidentally,
are the components of a three-dimensional vector k. In fact, we can write Eq.
(13.23) in vector notation as

C(x, y,z) = e Fthgther (13.25)

The amplitude varies as a c« mplex plane wave in three dimensions, moving in the
direction of k, and with the wave number k = (k2 + k2 + k2)V/2

The energy associated with these stationary states depends on the three com-
ponents of k in the complicated way given in Eq. (13.24). The nature, of the
variation of £ with k depends on relative signs and magnitudes of A4,, 4,, and 4,.
If these three numbers are all positive, and if we are interested 1n small values of
k, the dependence is relatively simple.

Expanding the cosines as we did before to get Eq. (13.16), we can now get that

E = Epin + A.0%k3 + AbkE + A.ckl. (13.26)

For a simple cubic lattice with lattice spacing a we expect that 4, and 4,
and A, would be equal—say all are just A—and we would have just

E = Epin + Ad®(k2 + K2 + K2),
or
E = Epin + Aa®k2. 13.27)

This is just like Eq. (13.16). Following the arguments used there, we would con-
clude that an electron packet in three dimensions (made up by superposing many
states with nearly equal energies) also moves like a classical particle with some
effective mass.

In a crystal with a lower symmetry than cubic (or even in a cubic crystal in
which the state of the electron at each atom is not symmetrical) the three coefficients
A., Ay, and A, are different. Then the “effective mass” of an electron localized
in a small region depends on its direction of motion. Tt could, for instance, have a
different inertia for motion in the x-direction than for motion in the y-direction.
(The details of such a situation are sometimes described in terms of an “effective
mass tensor.”)

13-5 Other states in a lattice

According to Eq. (13.24) the electron states we have been talking about can
have energies only in a certain “band” of energies which covers the energy range
from the minimum energy

Eoy — 2(4, + 4, + 4,)
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to the maximum energy
Ey 4+ 2(4, + 4, + A).

Other energies are possible, but they belong to a different class of electron states.
For the states we have described, we imagined base states in which an electron is
placed on an atom of the crystal in some particular state, say the lowest energy
state.

If you have an atom in empty space, and add an electron to make an ion, the
ion can be formed in many ways. The electron can go on in such a way as to make
the state of lowest energy, or it can go on to make one or another of many possible
“excited states” of the ion each with a definite energy above the lowest energy. The
same thing can happen in a crystal. Let’s suppose that the energy E, we picked
above corresponds to base states which are ions of the lowest possible energy.
We could also imagine a new set of base states in which the electron sits near the
nth atom in a different way—in one of the excited states of the ion—so that the
energy E, is now quite a bit higher. As before there is some amplitude 4 (different
from before) that the electron will jump from its excited state at one atom to the
same excited state at a neighboring atom. The whole analysis goes as before, we
find a band of possible energies centered at a higher energy. There can, in general,
be many such bands each corresponding to a different level of excitation.

There are also other possibilities. There may be some amplitude that the
electron jumps from an excited condition at one atom to an unexcited condition
at the next atom. (This is called an interaction between bands.) The mathematical
theory gets more and more complicated as you take into account more and more
bands and add more and more coefficients for leakage between the possible states.
No new ideas are involved, however; the equations are set up much as we have
done in our simple example.

We should remark also that there is not much more to be said about the vari-
ous coefficients, such as the amplitude 4, which appear in the theory. Generally
they are very hard to calculate, so in practical cases very little 1s known theoretically
about these parameters and for any particular real situation we can only take
values determined experimentally.

There are other situations where the physics and mathematics are almost
exactly like what we have found for an electron moving in a crystal, but in which
the “‘object” that moves is quite different. For instance, suppose that our original
crystal—or rather linear lattice—was a line of neutral atoms, each with a loosely
bound outer electron. Then imagine that we were to remove one electron. Which
atom has lost its electron? Let C, now represent the amplitude that the electron
is missing from the atom at x,. There will, in general, be some amplitude i4/A
that the electron at a neighboring atom—say the (n — 1)st atom—will jump to
the nth leaving the (n — 1)st atom without its electron. This is the same as saying
that there is an amplitude A for the “missing electron” to jump from the nth
atom to the (n — 1)st atom. You can see that the equations will be exactly the
same—of course, the value of 4 need not be the same as we had before. Again
we will get the same formulas for the energy levels, for the “waves” of probability
which move through the crystal with the group velocity of Eq. (13.18), for the
effective mass, and so on. Only now the waves describe the behavior of the missing
electron—or “hole” as it is called. So a “hole” acts just like a particle with a
certain mass m.;. You can see that this particle will appear to have a positive
charge. We’ll have some more to say about such holes in the next chapter.

As another example, we can think of a line of identical neutral atoms one of
which has been put into an excited state—that is, with more than its normal
ground state energy. Let C, be the amplitude that the nth atom has the excitation.
It can interact with a neighboring atom by handing over to it the extra energy and
returning to the ground state. Call the amplitude for this process i4/4. You
can see that 1t’s the same mathematics all over again. Now the object which moves
is called an exciton. It behaves like a neutral “‘particle’” moving through the crystal,
carrying the excitation energy. Such motion may be involved 1n certain biological
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processes such as vision, or photosynthesis. It has been guessed that the absorption
of light in the retina produces an ‘“exciton” which moves through some periodic
structure (such as the layers in the rods we described in Chapter 36, Vol. 1; see
Fig. 36-5) to be accumulated at some special station where the energy is used to
induce a chemical reaction.

13-6 Scattering from imperfections in the lattice

We want now to consider the case of a single electron in a crystal which is
not perfect. Our earlier analysis says that perfect crystals have perfect conductivity
—that electrons can go slipping through the crystal, as in a vacuum, without friction.
One of the most important things that can stop an electron from going on forever
is an imperfection or mrregularity in the crystal. As an example, suppose that
somewhere in the crystal there is a missing atom; or suppose that someone put
one wrong atom at one of the atomic sites so that things there are different than
at the other atomic sites. Say the energy, E, or the amplitude A4 could be different.
How would we describe what happens then?

To be specific, we will return to the one-dimensional case and we will assume
that atom number “zero” is an “impurity” atom and has a different value of E
than any of the other atoms. Let’s call this energy (E, + F). What happens?
When an electron arrives at atom ‘‘zero” there is some probability that the electron
is scattered backwards. If a wave packet is moving along and it reaches a place
where things are a little bit different, some of it will continue onward and some of
it will bounce back. It’s quite difficult to analyze such a situation using a wave
packet, because everything varies in time. It is much easier to work with steady-
state solutions. So we will work with stationary states, which we will find can be
made up of continuous waves which have transmitted and reflected parts. In
three dimensions we would call the reflected part the scattered wave, since it
would spread out in various directions.

We start out with a set of equations which are just like the ones in Eq. (13.6)
except that the equation for n = 0 is different from all the rest. The five equations
forn = -2, —1,0, +1, and +2 look like this:

Ea_s = Eqa_o — Aa_y — Aa_g,

Fa_, = Epay_ — Aag — Aa_o,
Eag = (Eo + Flag — Aa; — Aa_,, (13.28)
Ea, = Ega; — Aay; — Aa,,

Eaz = anz - Aa3 et Aal,

There are, of course, all the other equations for |n| is greater than 2. They will
look just like Eq. (13.16).

For the general case, we really ought to use a different 4 for the amplitude
that the electron jumps to or from atom ‘“‘zero,” but the main features of what
goes on will come out of a simplified example in which all the 4’s are equal.

Equation (13.10) would still work as a solution for all of the equations except
the one for atom ‘‘zero”—it isn’t right for that one equation. We need a different
solution which we can cook up in the following way. Equation (13.10) represents
a wave going in the positive x-direction. A wave going in the negative x-direction
would have been an equally good solution. It would be written

—ikz,

a(x,) = e

The most general solution we could have taken for Eq. (13.6) would be a com-
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bination of a forward and a backward wave, namely

a, = ae't™n 4 BeT (13.29)

Thus solution represents a complex wave of amplitude o moving in the + x-direction
and a wave of amplitude 8 moving in the — x-direction.

Now take a look at the set of equations for our new problem—the ones in
(13.28) together with those for all the other atoms. The equations involving
a,’s with n < 1 are all satisfied by Eq. (13.29), with the condition that & is related
to E and the lattice spacing b by

E = Eo — 24 cos kb. (13.30)

The physical meaning is an *“incident” wave of amplitude a approaching atom
“zero” (the ‘“‘scatterer’’) from the left, and a “scattered” or ‘‘reflected” wave of
amplitude 8 going back toward the left. We do not loose any generality if we set
the amplitude « of the incident wave equal to 1. Then the amplitude 8 is, in
general, a complex number.

We can say all the same things about the solutions of a, for n > 1. The
coefficients could be different, so we would have for them

a, = ve'*™ 4 e for n > 1. (13.31)

Here, 7 is the amplitude of a wave going to the right and § a wave coming from
the right. We want to consider the physical situation in which a wave is originally
started only from the left, and there is only a “transmitted” wave that comes out
beyond the scatterer—or impurity atom. We will try for a solution in which
5 = 0. We can, certainly, satisfy all of the equations for the a, except for the
middle three in Eq. (13.28) by the following trial solutions.

. tkxy, —tkzy
a, (forn < 0) = "™ + Be ) (13.32)

a, (forn > 0) = ve'n,

The situation we are talking about is illustrated in Fig. 13-6.

By using the formulas in Eq. (13.32) for a_; and a ,, the three middle equa-
tions of Eq. (13.28) will allow us to solve for a, and also for the two coefficients
B and v. So we have found a complete solution. Setting x,, = nb, we have to solve
the three equations

(E _ EO){ezk(—b) _|_ 6e—zk(—b)} — —A{ao _+_ ezk(—zb) + Be_lk(_gb)},
(E — Ey — Flag = —A{1e™? 4 ¥ | gemk=bn (13.33)
(E — Ep)ve'*® = —A{ve™ " 4+ g,}.

Remember that E is given in terms of k by Eq. (13.30). If you substitute this
value for E into the equations, and remember that cos x = 3(e** 4+ e~*%), you
get from the first equation that

ap =14 8; (13.34)
and from the third equation that
ap = 7. (13.35)
These are consistent only if
Y=1+28 (13.36)

This equation says that the transmitted wave (7) is just the original incident wave
(1) with an added wave (B8) equal to the reflected wave. This is not always true,
but happens to be so for a scattering at one atom only. If there were a clump of
impurity atoms, the amount added to the forward wave would not necessarily
be the same as the reflected wave.

13-11

SCATTERED WAVE

B TRANSMITTED WAVE

|
{
|
INCIDENT WAVE : ¥
‘ |
® ¢ o o =m o o o
n-—+~-4 -3 2 -1 0 1 2 3 4

Fig. 13-6. Waves in a one-dimen-
sional lattice with one “impurity” atom
atn = 0.



PROBABILITY

2 _+2Kx 2 -2Kx

cC e \/// 5 \\\‘/ c e
/H %\
== L] 5 i

Impurity Atom
e o o o e o o o

n—--4 -3 -2 -1 O t 2 3 a4

Fig. 13-7. The relative probabilities
of finding a trapped electron at atomic
sites near the trapping impurity atom.

We can get the amplitude 8 of the reflected wave from the middle equation
of Eq. (13.33); we find that

—F

B = F—2idsmkb (13.37)

We have the complete solution for the lattice with one unusual atom.

You may be wondering how the transmitted wave can be “more” than the
incident wave as it appears in Eq. (13.34). Remember, though, that 8 and 7 are
complex numbers and that the number of particles (or rather, the probability of
finding a particle) in a wave 1s proportional to the absolute square of the amplitude.
In fact, there will be “conservation of electrons” only if

8% + [1}? = L. (13.38)

You can show that this is true for our solution.

13-7 Trapping by a lattice imperfection

There is another interesting situation that can arise if F is a negative number.
If the energy of the electron is lower at the impurity atom (at n = 0) than 1t is
anywhere else, then the electron can get caught on this atom. That is, if (E¢g + F)
is below the bottom of the band at (E, — 24), then the electron can get “trapped”
in a state with £ < Ey; — 24. Such a solution cannot come out of what we have
done so far. We can get this solution, however, if we permit the trial solution we
took in Eq. (13.15) to have an imaginary number for k. Let’ssetk = ik Again, we
can have different solutions for n < 0 and for n > 0. A possible solution for
n < 0 might be

a, (forn < 0) = cet ™, (13.39)

We have to take a plus sign in the exponent; otherwise the amplitude would get
indefinitely large for large negative values of n. Similarly, a possible solution for
n > 0 would be

a, (forn > 0) = c'e ™™, (13.40)

If we put these trial solutions into Eq. (13.28) all but the middle three are
satisfied provided that

E = Ey — A(e*® + ). (13.41)

Since the sum of the two exponential terms is always greater than 2, this energy
is below the regular band, and 1s what we are looking for. The remaining three
equations in Eq. (13.28) are satisfied if ¢ = ¢’ and 1f « is chosen so that

A(e® — e = —F. (13.42)

Combining this equation with Eq. (13.41) we can find the energy of the trapped
electron; we get

E = Ey — V442 + F2. (13.43)

The trapped electron has a unique energy—located somewhat below the con-
duction band.

Notice that the amplitudes we have in Eq. (13.39) and (13.40) do not say that
the trapped electron sits right on the impurity atom. The probability of finding
the electron at nearby atoms is given by the square of these amplitudes. For one
particular choice of the parameters it might vary as shown in the bar graph of
Fig. 13-7. The probability is greatest for finding the electron on the impurity
atom. For nearby atoms the probability drops off exponentially with the distance
from the impurity atom. This is another example of ‘“‘barrier penetration.” From
the point-of-view of classical physics the electron doesn’t have enough energy to
get away from the energy “hole” at the trapping center. But quantum mechanically
it can leak out a little way.
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13-8 Scattering amplitudes and bound states

Finally, our example can be used to illustrate a point which is very useful
these days in the physics of high-energy particles. It has to do with a relationship
between scattering amplitudes and bound states. Suppose we have discovered—
through experiment and theoretical analysis—the way that pions scatter from
protons. Then a new particle is discovered and someone wonders whether maybe
it is just a combination of a pion and a proton held together in some bound state
(in an analogy to the way an electron is bound to a proton to make a hydrogen
atom). By a bound state we mean a combination which has a Jower energy than
the two free-particles.

There is a general theory which says that a bound state will exist at that
energy at which the scattering amplitude becomes infinite if extrapolated alge-
braically (the mathematical term is ‘‘analytically continued”) to energy regions
outside of the permitted band.

The physical reason for this is as follows. A bound state is a situation in
which there are only waves tied on to a point and there’s no wave coming in to get
it started, it just exists there by 1tself. The relative proportion between the so-called
“scattered” or created wave and the wave being ‘“‘sent in” is infinite. We can test
this idea in our example. Let’s write our expression Eq. (13.37) for the scattered
amplitude directly in terms of the energy E of the particle being scattered (instead
of in terms of k). Since Equation (13.30) can be rewritten as

24sinkb = VA4AZ — (E — Ep)?,
the scattered amplitude is

8 ~F

T F — iViAT — (E = Eg (13.44)

From our derivation, this equation should be used only for real states—those with
energies in the energy band, E = E, = 24. But suppose we forget that fact and
extend the formula into the “‘unphysical” energy regions where |E — Egy| > 2A4.
For these unphysical regions we can writet

V442 — (E — Ey)? = iV(E — Eg)2 — 442,
Then the *‘scattering amplitude,” whatever it may mean, is

B = =i :
F+ V(E = E) — 442

(13.45)

Now we ask: Is there any energy E for which 8 becomes infinite (i.e., for which the
expression for 8 has a “pole”)? Yes, so long as F is negative, the denominator of
Eq (13.45) will be zero when

(E — Ep)? — 44% = F?,

E = E, &+ V4A4? + F2.

The minus sign gives just the energy we found in Eq. (13.43) for the trapped energy.

What about the plus sign? This gives an energy above the allowed energy
band. And indeed there is another bound state there which we missed when we
solved the equations of Eq. (13.28). We leave it as a puzzle for you to find the
energy and amplitudes a,, for this bound state.

The relation between scattering and bound states provides one of the most
useful clues in the current search for an understanding of the experimental ob-
servations about the new strange particles.

or when

T The sign of the root 1o be chosen here is a technical point related 1o the allowed
signs of « in Egs. (13.39) and (13 40). We won’t go into it here.
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14

Semiconductors

14-1 Electrons and holes in semiconductors

One of the remarkable and dramatic developments in recent years has been
the application of solid state science to technical developments 1n electrical devices
such as transistors. The study of semiconductors led to the discovery of their
useful properties and to a large number of practical applications. The field 1s
changing so rapidly that what we tell you today may be incorrect next year. It
will certainly be incomplete. And it is perfectly clear that with the continuing
study of these materials many new and more wonderful things will be possible
as time goes on. You will not need to understand this chapter for what comes
later in this volume, but you may find it interesting to see that at least something
of what you are learning has some relation to the practical world.

There are large numbers of semiconductors known, but we’ll concentrate
on those which now have the greatest technical application. They are also the
ones that are best understood, and 1n understanding them we will obtain a degree
of understanding of many of the others. The semiconductor substances in most
common use today are silicon and germanium. These elements crystallize in the
diamond lattice, a kind of cubic structure in which the atoms have tetrahedral
bonding with their four nearest neighbors. They are insulators at very low tempera-
tures—near absolute zero—although they do conduct electricity somewhat at
room temperature. They are not metals; they are called semiconductors.

If we somehow put an extra electron into a crystal of silicon or germanium
which 1s at a low temperature, we will have just the situation we described in the
last chapter. The electron will be able to wander around in the crystal jumping
from one atomic site to the next. Actually, we have looked only at the behavior
of electrons in a rectangular lattice, and the equations would be somewhat different
for the real lattice of silicon or germanium. All of the essential points are, however,
illustrated by the results for the rectangular lattice.

As we saw in Chapter 13, these electrons can have energies only in a certain
energy band—called the conduction band. Within this band the energy is related
to the wave-number k of the probability amplitude C (see Eq. 13.24) by

E=E, — 2A,cosk,a — 2A, cos k,b — 2A cos k,c. (14.1)

The A’s are the amplitudes for jumping in the x-, y-, and z-directions, and a, b.
and ¢ are the lattice spacings in these directions.
For energies near the bottom of the band, we can approximate Eq. (14.1) by

E = En. + A k3 + AP’k + A.c°k3 (14.2)

(see Section 13-4)

If we think of electron motion 1n some particular direction, so that the com-
ponents of k are always 1n the same ratio, the energy is a quadratic function of
the wave number—and as we have seen of the momentum of the electron. We
can write

E = E., + ak?, (14.3)

where « is some constant, and we can make a graph of E versus k as in Fig, 14-1.
We'll call such a graph an “energy diagram.” An electron in a particular state of
energy and momentum can be indicated by a point such as S 1n the figure
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As we also mentioned in Chapter 13, we can have a similar situation if we
remove an electron from a neutral insulator. Then, an electron can jump over
from a nearby atom and fill the “hole,” but leaving another “hole” at the atom it
started from. We can describe this behavior by writing an amplitude to find the
hole at any particular atom, and by saying that the sole can jump from one atom to
the next. (Clearly, the amplitudes A4 that the hole jumps from atom a to atom b
is just the same as the amplitude that an electron on atom b jumps into the hole
at atom a.) The mathematics is just the same for the hole as it was for the extra
electron, and we get again that the energy of the hole is related to its wave number
by an equation just hke Eq. (14.1) or (14.2), except, of course, with different nu-
merical values for the amplitudes 4,, 4,, and 4,. The hole has an energy related
to the wave number of its probability amplitudes. Its energy lies in a restricted
band, and near the bottom of the band 1ts energy varies quadratically with the
wave number-—or momentum—just as in Fig. 14-1. Following the arguments of
Section 13-3, we would find that the hole also behaves like a classical particle
with a certain effective mass—except that in noncubic crystals the mass depends
on the direction of motion. So the hole behaves like a positive particle moving
through the crystal. The charge of the hole-particle is positive, because it is located
at the site of a missing electron: and when it moves in one direction there are ac-
tually electrons moving in the opposite direction.

If we put several electrons into a neutral crystal, they will move around much
like the atoms of a low-pressure gas. If there are not too many, their interactions
will not be very important. If we then put an electric field across the crystal, the
electrons will start to move and an electric current will flow. Eventually they would
all be drawn to one edge of the crystal, and, if there is a metal electrode there,
they would be collected, leaving the crystal neutral.

Similarly we could put many holes into a crystal. They would roam around
at random unless there is an electric field. With a field they would flow toward
the negative terminal, and would be “collected”—what actually happens is that
they are neutralized by electrons from the metal terminal.

One can also have both holes and electrons together. If there are not too
many, they will all go their way independently. With an electric field, they will
all contribute to the current. For obvious reasons, electrons are called the negarive
carriers and the holes are called the positive carriers.

We have so far considered that electrons are put into the crystal from the
outside, or are removed to make a hole. It is also possible to “create” an electron-
hole pair by taking a bound electron away from one neutral atom and putting it
some distance away in the same crystal. We then have a free electron and a free
hole, and the two can move about as we have described.

The energy required to put an electron info a state S—we say to ‘“‘create”
the state S—is the energy E~ shown in Fig, 14-2. It is some energy above E_,.
The energy required to “‘create” a hole in some state S’ is the energy E* of Fig.
14-3, which is some energy greater than E; . Now if we create a pair in the states
S and &, the energy required 1s just E~ + ET.

]

Fig. 14-2. The energy E™ is required Fig. 14-3. The energy E¥ is required

to “create” a free electron.

to “create” a hole in the state §'.
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The creation of pairs is a common process (as we will see later), so many
people like to put Fig. 14-2 and Fig. 14-3 together on the same graph—with the
hole energy plotted downward, although it is, of course a positive energy. We have
combined our two graphs in this way in Fig. 14-4. The advantage of such a
graph 1s that the energy E,... = E~ + ET required to create a pair with the
electron 1n S and the hole 1n S 1s just the vertical distance between S and S’ as
shown in Fig. 14-4. The minimum energy required to create a pair is called the
“gap” energy and is equal to Eq, + Ei.

Sometimes you will see a simpler diagram called an energy level diagram which
is drawn when people are not interested in the k variable. Such a diagram—shown
in Fig. 14-5—just shows the possible energies for the electrons and holes.}

How can electron-hole pairs be created? There are several ways. For ex-
ample, photons of hght (or x-rays) can be absorbed and create a pair if the photon
energy is above the energy of the gap. The rate at which pairs are produced is
proportional to the light intensity. If two electrodes are plated on a wafer of the
crystal and a “bias” voltage is applied, the electrons and holes will be drawn to
the electrodes. The circuit current will be proportional to the intensity of the light.
This mechanism is responsible for the phenomenon of photoconductivity and the
operation of photoconductive cells.

Electron hole pairs can also be produced by high-energy particles. When a
fast-moving charged particle—for instance, a proton or a pion with an energy of
tens or hundreds of Mev—goes through a crystal, its electric field will knock elec-
trons out of therr bound states creating electron-hole pairs. Such events occur
hundreds of thousands of times per millimeter of track. After the passage of the
particle, the carriers can be collected and 1n doing so will give an electrical pulse.
This is the mechanism at play in the semiconductor counters recently put to use
for experiments 1n nuclear physics. Such counters do not require semiconductors:
they can also be made with crystalline insulators. In fact, the first of such counters
was made using a diamond crystal which is an insulator at room temperature.
Very pure crystals are required 1if the holes and electrons are to be able to move
freely to the electrodes without being trapped. The semiconductors silicon and
germanium are used because they can be produced with high purity in reasonable
large sizes (centimeter dimensions).

So far we have been concerned with semiconductor crystals at temperatures
near absolute zero. At any finite temperature there is still another mechanism by
which electron-hole pairs can be created. The pair energy can be provided from
the thermal energy of the crystal. The thermal vibrations of the crystal can transfer
their energy to a pair—giving rise to “spontaneous” creation.

The probability per unit time that the energy as large as the gap energy E,,,
will be concentrated at one atomic site is proportional to e~ Ze0/*7 where T is the
temperature and « is Boltzmann’s constant (see Chapter 40, Vol. I). Near absolute
zero there is no appreciable probability, but as the temperature rises there is
an increasing probability of producing such pairs. At any finite temperature the
production should continue forever at a constant rate giving more and more
negative and positive carriers. Of course that does not happen because after
awhile the electrons and holes accidentally find each other—the electron drops
into the hole and the excess energy is given to the lattice. We say that the electron
and hole “annihilate.” There is a certain probability per second that a hole meets
an electron and the two things annthilate each other.

If the number of electrons per unit volume is &, (n for negative carriers)
and the density of positive carriers is N, the chance per unit time that an electron
and a hole will find each other and annihilate is proportional to the product N, N,.
In equilibrium this rate must equal the rate that pairs are created. You see that in

+ In many books this same energy diagram is interpreted in a different way. The energy
scale refers only to electrons. Instead of thinking of the energy of the hole, they think of
the energy an electron would have if 1t filled the hole. This energy 1s Jower than the free-
electron energy—in fact, just the amount lower that you see in Fig. 14-5. With this
interpretation of the energy scale, the gap energy is the minimum energy which must be
given to an electron to move 1t from its bound state to the conduction band.
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equilibrium the product of N, and N, should be given by some constant times the
Boltzmann factor:

N,N, = const ¢~ Fer/xT (14 4)

When we say constant, we mean nearly constant. A more complete theory—which
includes more details about how holes and electrons “find”’ each other—shows
that the “constant” is slightly dependent upon temperature, but the major de-
pendence on temperature is in the exponential.

Let’s consider, as an example, a pure material which is originally neutral.
At a finite temperature you would expect the number of positive and negative
carriers to be equal, N, = N,. Then each of them should vary with temperature
as e~ Fean/ 2T The variation of many of the properties of a superconductor—the
conductivity for example—is mainly determined by the exponential factor because
all the other factors vary much more slowly with temperature. The gap energy for
germanium is about 0.72 ev and for silicon 1.1 ev.

At room temperature k7T is about 1/40 of an electron volt. At these tempera-
tures there are enough holes and electrons to give a significant conductivity, while
at, say, 30°K—one-tenth of room temperature—the conductivity is imperceptible.
The gap energy of diamond is 6 or 7 ev and diamond is a good insulator at room
temperature.

14-2 Impure semiconductors

So far we have talked about two ways that extra electrons can be put into an
otherwise ideally perfect crystal lattice. One way was to inject the electron from
an outside source; the other way, was to knock a bound electron off a neutral
atom creating simultaneously an electron and a hole. It is possible to put electrons
into the conduction band of a crystal in still another way. Suppose we imagine a
crystal of germanium in which one of the germanium atoms is replaced by an
arsenic atom. The germanium atoms have a valence of 4 and the crystal structure
is controlled by the four valence electrons. Arsenic, on the other hand, has a
valence of 5. It turns out that a single arsenic atom can sit in the germanium lattice
(because it has approximately the correct size), but in doing so it must act as a
valence 4 atom—using four of its valence electrons to form the crystal bonds and
having one electron left over. This extra electron is very loosely attached—the
binding energy is less than 1/10 of a volt. At room temperature the electron easily
picks up that much energy from the thermal energy of the crystal, and then takes
off on its own—moving about in the lattice as a free electron. An impurity atom
such as the arsenic is called a donor site because it can give up a negative carrier
to the crystal. If a crystal of germanium is grown from a melt to which a very small
amount of arsenic has been added, the arsenic donor sites will be distributed
throughout the crystal and the crystal will have a certain density of negative
carriers built in.

You might think that these carriers would get swept away as soon as any small
electric field was put across the crystal. This will not happen, however, because
the arsenic atoms in the body of the crystal each have a positive charge. If the body
of the crystal is to remain neutral, the average density of negative carrier electrons
must be equal to the density of donor sites. If you put two electrodes on the edges
of such a crystal and connect them to a battery, a current will flow; but as the
carrier electrons are swept out at one end, new conduction electrons must be
introduced from the electrode on the other end so that the average density of
conduction electrons is left very nearly equal to the density of donor sites.

Since the donor sites are positively charged, there will be some tendency for
them to capture some of the conduction electrons as they diffuse around inside
the crystal. A donor site can, therefore, act as a trap such as those we discussed
in the last section. But if the trapping energy is sufficiently small—as it is for arsenic
—the number of carriers which are trapped at any one time is a small fraction
of the total. For a complete understanding of the behavior of semiconductors
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one must take into account this trapping. For the rest of our discussion, however,
we will assume that the trapping energy is sufficiently low and the temperature is
sufficiently high, that all of the donor sites have given up their electrons. This is,
of course, just an approximation.

It is also possible to build into a germanium crystal some impurity atom
whose valence is 3, such as aluminum. The aluminum atom tries to act as a
valence 4 object by stealing an extra electron. It can steal an electron from some
nearby germanium atom and end up as a negatively charged atom with an effective
valence of 4. Of course, when it steals the electron from a germanium atom, it
leaves a hole there; and this hole can wander around in the crystal as a positive
carrier. An impurity atom which can produce a hole in this way is called an
acceptor because 1t “‘accepts” an electron. If a germanium or a silicon crystal is
grown from a melt to which a small amount of aluminum impurity has been
added, the crystal will have built-in a certain density of holes which can act as
positive carriers.

When a donor or an acceptor impurity is added to a semiconductor, we say
that the material has been “doped.”

When a germanium crystal with some built-in donor impurities is at room
temperature, some conduction electrons are contributed by the thermally induced
electron-hole pair creation as well as by the donor sites. The electrons from both
sources are, naturally, equivalent, and it is the total number N, which comes into
play in the statistical processes that lead to equilibrium. If the temperature is not
too low, the number of negative carriers contributed by the donor impurity atoms
is roughly equal to the number of impurity atoms present. In equilibrium Eg.
(14.4) must still be valid; at a given temperature the product N, N, is determined.
This means that if we add some donor impurity which increases N,, the number
N, of positive carriers will have to decrease by such an amount that N, N, is
unchanged. If the impurity concentration is high enough, the number N, of nega-
tive carriers is determined by the number of donor sites and is nearly independent
of temperature—all of the variation in the exponential factor is supplied by N,,
even though it is much less than N,,. An otherwise pure crystal with a small con-
centration of donor impurity will have a majority of negative carriers; such a
material is called an “n-type” semiconductor.

If an acceptor-type impurity is added to the crystal lattice, some of the new
holes will drift around and annihilate some of the free electrons produced by
thermal fluctuation. This process will go on until Eq. (14.4) is satisfied. Under
equilibrium conditions the number of positive carriers will be increased and the
number of negative carriers will be decreased, leaving the product a constant. A
material with an excess of positive carriers 1s called a “p-type” semiconductor.

If we put two electrodes on a piece of semiconductor crystal and connect
them to a source of potential difference, there will be an electric field inside the
crystal. The electric field will cause the positive and the negative carriers to move,
and an electric current will flow. Let’s consider first what will happen in an
n-type material in which there is a large majority of negative carriers. For such
material we can disregard the holes, they will contribute very little to the current
because there are so few of them. In an ideal crystal the carriers would move across
without any impediment. In a real crystal at a finite temperature, however,—
especially in a crystal with some impurities—the electrons do not move completely
freely. They are continually making collisions which knock them out of their
original trajectories, that is, changing their momentum. These collisions are just
exactly the scatterings we talked about in the last chapter and occur at any irregu-
larity in the crystal lattice. In an n-type material the main causes of scattering are
the very donor sites that are producing the carriers. Since the conduction electrons
have a very slightly different energy at the donor sites, the probability waves are
scattered from that point. Even in a perfectly pure crystal, however, there are
(at any finite temperature) irregularities in the lattice due to thermal vibrations.
From the classical point of view we can say that the atoms aren’t lined up exactly
on a regular lattice, but are, at any instant, slightly out of place due to their thermal
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vibrations. The energy E, associated with each lattice point in the theory we
described in Chapter 13 varies a little bit from place to place so that the waves of
probability amplitude are not transmitted perfectly but are scattered in an irregular
fashion. At very high temperatures or for very pure materials this scattering may
become important, but in most doped materials used in practical devices the
impurity atoms contribute most of the scattering. We would like now to make an
estimate of the electrical conductivity of such a material.

When an electric field is applied to an n-type semiconductor, each negative
carrier will be accelerated in this field, picking up velocity until it is scattered from
one of the donor sites. This means that the carriers which are ordinarily moving
about in a random fashion with their thermal energies will pick up an average
drift velocity along the lines of the electric field and give rise to a current through
the crystal. The drift velocity is in general rather small compared with the typical
thermal veloctties so that we can estimate the current by assuming that the average
time that the carrier travels between scatterings is a constant. Let’s say that the
negative carrier has an effective electric charge ¢,. In an electric field &, the force
on the carrier will be g,&. In Section 43-3 of Volume I we calculated the average
drift velocity under such circumstances and found that it is given by Fr/m, where
F is the force on the charge, 7 is the mean free time between collistons, and m is the
mass. We should use the effective mass we calculated in the last chapter but
since we want to make a rough calculation we will suppose that this effective mass
is the same in all directions. Here we will call 1t m,,. With this approximation the
average drift velocity will be

Vdnft = q’::‘rn ) (14.5)
n

Knowing the drift velocity we can find the current. Electric current density j is
just the number of carriers per unit volume, N,, multiplied by the average drift
velocity, and by the charge on each carrier. The current density is therefore

NougaTa

j = NpVanitgn8 = m,

&. (14.6)

We see that the current density is proportional to the electric field; such a semi-
conductor material obeys Ohm’s law. The coefficient of proportionality between
Jj and &, the conductivity o, is

2
o = NalaTn (14.7)

my

For an n-type material the conductivity is relatively independent of temperature.
First, the number of majority carriers &, 1s determined primarily by the density
of donors in the crystal (so long as the temperature is not so low that too many
of the carrers are trapped). Second, the mean time between collisions 7, is mainly
controlled by the density of impurity atoms, which is, of course, independent of
the temperature.

We can apply all the same arguments to a p-type material, changing only the
values of the parameters which appear in Eq. (14.7). If there are comparable
numbers of both negative and positive carriers present at the same time, we must
add the contributions from each kind of carrier. The total conductivity will be

given by
o = Nn 37'n + NpquI’_

(14.8)
m, my,

For very pure materials, N, and N, will be nearly equal. They will be smaller
than in a doped material, so the conductivity will be less. Also they will vary
rapidly with temperature (like e~ Fe»/<T) as we have seen), so the conductivity
may change extremely fast with temperature.
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14-3 The Hall effect

It is certainly a peculiar thing that in a substance where the only relatively
free objects are electrons, there should be an electrical current carried by holes
that behave like positive particles. We would like, therefore, to describe an experi-
ment that shows in a rather clear way that the sign of the carrier of electric current
is quite definitely positive. Suppose we have a block made of semiconductor
material—it could also be a metal—and we put an electric field on 1t so as to draw a
current in some direction, say the horizontal direction as drawn in Fig. 14-6.
Now suppose we put a magnetic field on the block pointing at a right angle to
the current, say inro the plane of the figure. The moving carriers will feel a mag-
netic force g(v X B). And since the average dnft velocity 1s either right or left—
depending on the sign of the charge on the carrier—the average magnetic force on
the carriers will be either up or down. No, that is not right! For the directions
we have assumed for the current and the magnetic field the magnetic force on the
moving charges will always be up. Positive charges moving n the direction of j
(to the right) will feel an upward force. If the current s carried by negative charges,
they will be moving left (for the same sign of the conduction current) and they
will also feel an upward force. Under steady conditions, however, there is no
upward motion of the carriers because the current can flow only from left to right.
What happens is that a few of the charges initially flow upward, producing a sur-
face charge density along the upper surface of semiconductor—leaving an equal
and opposite surface charge density along the bottom surface of the crystal. The
charges pile up on the top and bottom surfaces until the electric forces they produce
on the moving charges just exactly cancel the magnetic force (on the average) so
that the steady current flows horizontally. The charges on the top and bottom
surfaces will produce a potential difference vertically across the crystal which can
be measured with a high-resistance voltmeter, as shown in Fig. 14-7. The sign
of the potential difference registered by the voltmeter will depend on the sign of
the carrier charges responsible for the current.

When such experiments were first done it was expected that the sign of the
potential difference would be negative as one would expect for negative conduction
electrons. People were, therefore, quite surprised to find that for some materials
the sign of the potential difference was in the opposite direction. It appeared that
the current carrier was a particle with a positive charge. From our discussion of
doped semiconductors it is understandable that an n-type semiconductor should
produce the sign of potential difference appropriate to negative carriers, and that
a p-type semiconductor should give an opposite potential difference, since the
current is carried by the positively charged holes.

The original discovery of the anomalous sign of the potential difference in
the Hall effect was made in a metal rather than a semiconductor. It had been
assumed that in metals the conduction was always by electron; however, it was
found out that for berylium the potential difference had the wrong sign. It 1s now
understood that in metals as well as in semiconductors it is possible, in certain
circumstances, that the “objects” responsible for the conduction are holes. Al-
though it is ultimately the electrons in the crystal which do the moving, neverthe-
less, the relationship of the momentum and the energy, and the response to external
fields is exactly what one would expect for an electric current carried by positive
particles.

Let’s see if we can make a quantitative estimate of the magnitude of the volt-
age difference expected from the Hall effect. If the voltmeter in Fig 14-7 draws a
negligible current, then the charges inside the semiconductor must be moving
from left to right and the vertical magnetic force must be precisely cancelled by a
vertical electric field which we will call & (the “tr”” is for ‘“‘transverse”). If this
electric field is to cancel the magnetic forces, we must have

Etr = —Vanft X B. (149)

Using the relation between the drift velocity and the electric current density given

14-7

I L +(-)
B®

i
=(+)

Fig. 14-6. The Hall effect comes from
the magnetic forces on the carriers.

ELECTRONIC
VOLTMETER -

o +

@

?{W— :

Fig. 14-7. Measuring the Hall effect.




p-type material n-type material

Fig. 14-8. A p-n junction

N
2

(b)

(c)

Fig. 14-9. The electric potential and

the carrier densities
semiconductor junction.

In an unbiased

in Eq. (14.6), we get

8” = - "‘I]I—V jB

The potential difference between the top and the bottom of the crystal is, of course,
this electric field strength multiphed by the height of the crystal. The electric field
strength &, in the crystal is proportional to the current density and to the mag-
netic field strength. The constant of proportionalty 1/gN 1s called the Hall
coefficient and is usually represented by the symbol Ry. The Hall coefficient de-
pends just on the density of carriers—provided that carriers of one sign are in a
large majority. Measurement of the Hall effect is, therefore, one convenient way
of determining experimentally the density of carriers in a semiconductor.

14-4 Semiconductor junctions

We would like to discuss now what happens if we take two pieces of germanium
or silicon with different internal characteristics—say different kinds or amounts
of doping—and put them together to make a “junction.” Let’s start out with what
is called a p-n junction in which we have p-type germanium on one side of the
boundary and a-type germanium on the other side of the boundary—as sketched
n Fig. 14-8. Actually, it 1s not practical to put together two separate pieces of
crystal and have them in uniform contact on an atomic scale. Instead, junctions
are made out of a single crystal which has been modified in the two separate
regions. One way 1s to add some suitable doping impurity to the “melt” after
only half of the crystal has grown. Another way is to paint a little of the impurity
element on the surface and then heat the crystal causing some impurity atoms to
diffuse into the body of the crystal. Junctions made in these ways do not have a
sharp boundary, although the boundaries can be made as thin as 10™* centimeters
or so. For our discussions we will imagine an ideal situation in which these two
regions of the crystal with different properties meeting at a sharp boundary.

On the n-type side of p-n junction there are free electrons which can move
about, as well as the fixed donor sites which balance the overall electric charge.
On the p-type side there are free holes moving about and an equal number of
negative acceptor sites keeping the charge balanced. Actually, that describes the
situation before we put the two materials 1n contact. Once they are connected
together the situation will change near the boundary. When the electrons in
the n-type material arrive at the boundary they will not be reflected back as they
would at a free surface, but are able to go right on into the p-type material. Some
of the electrons of the n-type material will, therefore, tend to diffuse over into the
p-type material where there are fewer electrons. This cannot go on forever because
as we lose electrons from the n-side the net positive charge there increases until
finally an electric voltage is built up which retards the diffusion of electrons into
the p-side. In a similar way, the positive carriers of the p-type material can diffuse
across the junction into the n-type material. When they do this they leave behind
an excess of negative charge. Under equilibrium conditions the net diffusion cur-
rent must be zero. This brought about by the electric fields which are established
in such a way as to draw the positive carriers back toward the p-type material.

The two diffusion processes we have been describing go on simultaneously
and, you will notice, both act in the direction which will charge up the n-type
material 1n a positive sense and the p-type material in a negative sense. Because
of the finite conductivity of the semiconductor material, the change in potential
from the p-side to the n-side will occur in a relatively narrow region near the bound-
ary; the main body of each block of material will have a uniform potential. Let's
imagine an x-axis in a direction perpendicular to the boundary surface. Then the
electric potential will vary with x, as shown in Fig. 14-9(b). We have also shown
in part (c) of the figure the expected variation of the density N, of n-carriers and
the density N, of p-carriers. Far away from the junction the carrier densities
N, and N, should be just the equilibrium density we would expect for individual
blocks of materials at the same temperature. (We have drawn the figure for a
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junction in which the p-type material is more heavily doped than the n-type
material.) Because of the potential gradient at the junction, the positive carriers
have to climb up a potential hill to get to the p-type side. This means that under
equilibrium conditions there can be fewer positive carriers in the n-type material
than there are 1n the p-type material Remembering the laws of statistical me-
chanics, we expect that the ratio of p-type carriers on the two sides to be given by
the following equation:

Np(p-side)  _, viur

—Nm = e . (14.10)
The product ¢,V in the numerator of the exponential is just the energy required to
carry a charge of ¢, through a potential difference V.

We have a precisely similar equation for the densities of the n-type carriers:

Nu(n-side) g vpr

Ny (p-side) )
If we know the equilibrium densities in each of the two materials, we can use
either of the two equations above to determine the potential difference across the
junction.

Notice that if Egs. (14.10) and (14.11) are to give the same value for the
potential difference ¥V, the product N,N, must be the same for the p-side as for
the n-side. (Remember that g, = —g,.) We have seen earlier, however, that this
product depends only on the temperature and the gap energy of the crystal.
Provided both sides of the crystal are at the same temperature, the two equations
are consistent with the same value of the potential difference.

Since there is a potential difference from one side of the junction to the other,
it looks something like a battery. Perhaps if we connect a wire from the n-type side
to the p-type side we will get an electrical current. That would be nice because
then the current would flow forever without using up any material and we would
have an 1nfinite source of energy in violation of the second law of thermodynamics!
There is, however, no current if you connect a wire from the p-side to the n-side.
And the reason 1s easy to see. Suppose we imagine first a wire made out of a piece
of undoped material. When we connect this wire to the n-type side, we have a
junction. There will be a potential difference across this junction. Let’s say that
it is just one-half the potential difference from the p-type material to the n-type
material. When we connect our undoped wire to the p-type side of the junction,
there is also a potential difference at this junction—again, one-half the potential
drop across the p-n junction. At all the junctions the potential differences adjust
themselves so that there is no net current flow in the circuit. Whatever kind of wire
you use to connect together the two sides of the n-p junction, you are producing
two new junctions, and so long as all the junctions are at the same temperature, the
potential jumps at the junctions all compensate each other and no current will
flow 1n the circuit. It does turn out, however—if you work out the details—that 1f
some of the junctions are at a different temperature than the other junctions,
currents will flow. Some of the junctions will be heated and others will be cooled
by this current and thermal energy will be converted into electrical energy. This
effect is responsible for the operation of thermocouples which are used for measur-
ing temperatures, and of thermoelectric generators. The same effect is also used
to make small refrigerators.

If we cannot measure the potential difference between the two sides of an
n-p junction, how can we really be sure that the potential gradient shown in Fig.
14-9 really exists? One way is to shine light on the junction. When the light
photons are absorbed they can produce an electron-hole pair. In the strong
electric field that exists at the junction (equal to the slope of the potential curve of
Fig. 14-9) the hole will be driven into the p-type region and the electron will be
driven 1nto the n-type region. If the two sides of the junction are now connected
to an external circuit, these extra charges will provide a current. The energy of
the light will be converted into electrical energy in the junction. The solar cells
which generate electrical power for the operation of some of our satellites operate
on this principle.

(14.11)
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In our discussion of the operation of a semiconductor junction we have been
assuming that the holes and the electrons act more-or-less independently—except
that they somehow get into proper statistical equilibrium. When we were describing
the current produced by light shining on the junction, we were assuming that an
electron or a hole produced in the junction region would get into the main body of
the crystal before being annihilated by a carrier of the opposite polarity. In the
immediate vicinity of the junction, where the density of carriers of both signs is
approximately equal, the effect of electron-hole annihilation (or as it is often
called, “recombination”) is an important effect, and in a detailed analysis of a semi-
conductor junction must be properly taken into account. We have been assuming
that a hole or an electron produced in a junction region has a good chance of
getting into the main body of the crystal before recombining. The typical time
for an electron or a hole to find an opposite partner and annihilate it is for typical
semiconductor materials in the range between 10~ and 1077 seconds. This time
is, incidentally, much longer than the mean free time 7 between collisions with
scattering sites in the crystal which we used in the analysis of conductivity. In
a typical n-p junction, the time for an electron or hole formed in the junction region
to be swept away into the body of the crystal is generally much shorter than the
recombination time. Most of the pairs will, therefore, contribute to an external
current.

14-5 Rectification at a semiconductor junction

We would like to show next how it is that a p-n junction can act like a rectifier.
If we put a voltage across the junction, a large current will flow if the polarity is in
one direction, but a very small current will flow if the same voltage is applied in the
opposite direction. If an alternating voltage is applied across the junction, a net
current will flow in one direction—the current is “rectified.” Let’s look again at
what 1s going on in the equilibrium condition described by the graphs of Fig.
14-9. In the p-type material there is a large concentration N, of positive carriers.
These carriers are diffusing around and a certain number of them each second
approach the junction. This current of positive carriers which approaches the
Jjunction 1s proportional to N,. Most of them, however, are turned back by the
high potential hill at the junction and only the fraction ¢~ 9V/*T gets through.
There is also a current of positive carriers approaching the junction from the other
side. This current is also proportional to the density of positive carriers in the
n-type region, but the carrier density here is much smaller than the density on the
p-type side. When the positive carriers approach the junction from the n-type
side, they find a hill with a negative slope and immediately slide downhill to the
p-type side of the junction. Let’s call this current /,. Under equilibrium the cur-
rents from the two directions are equal. We expect then the following relation;

Iy ~ Ny(n-side) = N,(p-side)e™?"/ T, (14.12)

You will notice that this equation is really just the same as Eq. (14-10). We have
just derived 1t 1n a different way.

Suppose, however, that we lower the voltage on the n-side of the junction by
an amount A¥V—which we can do by applying an external potential difference to
the junction. Now the difference in potential across the potential hill is no longer
V but ¥V — AV. The current of positive carriers from the p-side to the n-side will
now have this potential difference in its exponential factor. Calling this current
I,, we have

I ~ N,(p-side)e 1V =21

This current is larger than J,, by just the factor ¢?*¥/*T. So we have the following
relation between I and /,:

I; = IetdVinT, (14.13)

The current from the p-side increases exponentially with the externally applied
voltage AV. The current of positive carriers from the n-side, however, remains
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constant so long as AV is not too large. When they approach the barrier, these 1/1,
carriers will still find a downhill potential and will all fall down to the p-side

(If AV is larger than the natural potential difference V, the situation would change, &1

but we will not consider what happens at such high voltages.) The net current J of 51
positive carriers which flows across the junction 1s then the difference between the

currents from the two sides: 4t
I = Iy(eteVil —_ 1), (14.14)

3 4

The net current I of holes flows into the n-type region. There the holes diffuse
into the body of the n-region, where they are eventually annihilated by the majority 2
n-type carriers—the electrons. The electrons which are lost in this annihilation
will be made up by a current of electrons from the external terminal of the n-type I+
material. AVKT

When AV 1s zero, the net current in Eq. (14.14) is zero For positive AV the 0
current increases rapidly with the applied voltage. For negative AV the current
reverses 1n sign, but the exponential term soon becomes negligible and the negative ~ — 7~~~ 777~ bT
current never exceeds /o—which under our assumptions is rather small. This
back current /g is limited by the small density of the minority carriers on the n-side
of the junction.

If you go through exactly the same analysis for the current of negative carriers
which flows across the junction, first with no potential difference and then with a
small externally applied potential difference AV, you get again an equation just
like (14.14) for the net electron current. Since the total current is the sum of the
currents contributed by the two carriers, Eq. (14.14) still applies for the total
current provided we identify 7y as the maximum current which can flow for a
reversed voltage.

The voltage-current characteristic of Eq. (14.14) 1s shown in Fig. 14-10. It
shows the typical behavior of solid state diodes—such as those used in modern
computers. We should remark that Eq. (14.14) 1s true only for small voltages.
For voltages comparable to or larger than the natural internal voltage difference
¥, other effects come into play and the current no longer obeys the simple equation. (b)

You may remember, incidentally, that we got exactly the same equation we
have found here in Eq. (14.14) when we discussed the “mechanical rectifier”—the
ratchet and pawl—in Chapter 46 of Yolume I. We get the same equations in the
two situations because the basic physical processes are quite similar. ,

Fig. 14-10. The current through a
junction as a function of the voltage
across it.

Fig. 14-11. The potential distribu-
tion in a transistor with no applied

Perhaps the most important application of semiconductors is in the transistor.  voltages.

The transistor consists of two semiconductor junctions very close together. Its
operation 1s based in part on the same principles that we just described for the
semiconductor diode—the rectifying junction. Suppose we make a little bar of
germanium with three distinct regions, a p-type region, an n-type region, and
another p-type region, as shown in Fig. 14-11(a). This combination is called a

p-n-p transistor. Each of the two junctions 1n the transistor will behave much in

the way we have described 1n the last section. In particular, there will be a potential ~ (qg)
gradient at each junction having a certain potential drop from the n-type region to

each p-type region. If the two p-type regions have the same internal properties, y
the variation in potential as we go across the crystal will be as shown 1n the graph
of Fig. 14-11(b).

Now let’s imagine that we connect each of the three regions to external voltage
sources as shown in part (a) of Fig. 14-12 We will refer all voltages to the terminal
connected to the left-hand p-region so it will be, by definition, at zero potential.
We will call this terminal the emitter. The n-type region 1s called the base and it is
connected to a slightly negative potential. The right-hand p-type region is called
the collector, and is connected to a somewhar larger negative potential. Under
these circumstances the variation of potential across the crystal will be as shown in
the graph of Fig. 14-12(b).

Let’s first see what happens to the positive carriers, since it is primarily their Fig. 14-12. The potential distribu-
behavior which controls the operation of the p-n-p transistor. Since the emitter is  tion in an operating transistor.
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at a relatively more positive potential than the base, a current of positive carriers
will flow from the emitter region into the base region. A relatively large current
flows, since we have a junction operating with a “‘forward voltage”’—corresponding
to the right-hand half of the graph in Fig, 14-10. With these conditions, positive
carriers or holes are being “emitted” from the p-type region into the n-type region.
You might think that this current would flow out of the n-type region through the
base terminal b. Now, however, comes the secret of the transistor. The n-type
region is made very thin—typically 1073 cm or less, much narrower than its trans-
verse dimensions. This means that as the holes enter the n-type region they have
a very good chance of diffusing across to the other junction before they are anni-
hilated by the electrons in the n-type region. When they get to the right-hand
boundary of the n-type region they find a steep downward potential hill and im-
mediately fall into the right-hand p-type region. This side of the crystal 1s called
the collector because it “collects” the holes after they have diffused across the n-type
region. In a typical transistor, all but a fraction of a percent of the hole current
which leaves the emitter and enters the base is collected in the collector region,
and only the small remainder contributes to the net base current. The sum of the
base and collector currents is, of course, equal to the emitter current.

Now imagine what happens if we vary slightly the potential ¥ on the base
terminal. Since we are on a relatively steep part of the curve of Fig. 14-10, a
small variation of the potential V' will cause a rather large change in the emitter
current I,. Since the collector voltage ¥V, is much more negative than the base
voltage, these slight variations in potential will not effect appreciably the steep
potential hill between the base and the collector. Most of the positive carriers
emitted into the n-region will still be caught by the collector. Thus as we vary
the potential of the base electrode, there will be a corresponding variation 1n the
collector current I,. The essential point, however, is that the base current I,
always remains a small fraction of the collector current. The transistor 1s an
amplifier; a small current [, introduced into the base electrode gives a large current
—100 or so times higher—at the collector electrode.

What about the electrons—the negative carriers that we have been neglecting
so far? First, note that we do not expect any significant electron current to flow
between the base and the collector. With a large negative voltage on the collector,
the electrons in the base would have to climb a very high potential energy hill and
the probability of doing that is very small. There is a very small current of elec-
trons to the collector.

On the other hand, the electrons in the base can go into the emitter region.
In fact, you might expect the electron current in this direction to be comparable to
the hole current from the emitter into the base. Such an electron current isn’t
useful, and, on the contrary, is bad because it increases the total base current
required for a given current of holes to the collector. The transistor is, therefore,
designed to minimize the electron current to the emitter. The electron current is
proportional to N,(base), the density of negative carriers in the base material
while the hole current from the emitter depends on N,(emitter), the density of
positive carriers in the emitter region. By using relatively little doping in the n-type
material N,(base) can be made much smaller than N (emitter). (The very thin
base region also helps a great deal because the sweeping out of the holes in this
region by the collector increases significantly the average hole current from the
emitter into the base, while leaving the electron current unchanged.) The net
result is that the electron current across the emitter-base junction can be made
much less than the hole current, so that the electrons do not play any significant
role in operation of the p-n-p transistor. The currents are dominated by motion of
the holes, and the transistor performs as an amplifier as we have described above.

It is also possible to make a transistor by interchanging the p-type and n-type
materials in Fig. 14-11. Then we have what is called an n-p-n transistor. In the
n-p-n transistor the main currents are carried by the electrons which flow from the
emitter into the base and from there to the collector. Obviously, all the arguments
we have made for the p-n-p transistor also apply to the n-p-n transistor if the po-
tentials of the electrodes are chosen with the opposite signs.
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15

The Independent Particle Approximation

15-1 Spin waves

In Chapter 13 we worked out the theory for the propagation of an electron or
of some other “particle,” such as an atomic excitation, through a crystal lattice.
In the last chapter we applied the theory to semiconductors. But when we talked
about situations in which there are many electrons we disregarded any interactions
between them. To do this is of course only an approximation. In this chapter
we will discuss further the idea that you can disregard the interaction between the
electrons. We will also use the opportunity to show you some more applications
of the theory of the propagation of particles. Since we will generally continue to
disregard the interactions between particles, there is very little really new in this
chapter except for the new applications. The first example to be considered is,
however, one in which it is possible to write down quite exactly the correct equa-
tions when there is more than one “particle” present. From them we will be able
to see how the approximation of disregarding the interactions is made. We will
not, though, analyze the problem very carefully.

As our first example we will consider a “spin wave” in a ferromagnetic crystal.
We have discussed the theory of ferromagnetism in Chapter 36 of Volume II.
At zero temperature all the electron spins that contribute to the magnetism in the
body of a ferromagnetic crystal are parallel. There is an interaction energy between
the spins, which is lowest when all the spins are down. At any nonzero temperature,
however, there is some chance that some of the spins are turned over. We calculated
the probability in an approximate manner in Chapter 36. This time we will describe
the quantum mechanical theory—so you will see what you would have to do if you
wanted to solve the problem more exactly. (We will still make some 1dealizations
by assuming that the electrons are localized at the atoms and that the spins interact
only with neighboring spins.)

We consider a model in which the electrons at each atom are all paired except
one, so that all of the magnetic effects come from one spin-% electron per atom.
Further, we imagine that these electrons are localized at the atomic sites in the
lattice. The model corresponds roughly to metallic nickel.

We also assume that there 1s an interaction between any two adjacent spinning
electrons which gives a term in the energy of the system

E=—> Ko, o, 15.1)
1, 7

where ¢’s represent the spins and the summation is over all adjacent pairs of
electrons. We have already discussed this kind of interaction energy when we
considered the hyperfine splitting of hydrogen due to the interaction of the mag-
netic moments of the electron and proton in a hydrogen atom. We expressed it
then as Ao, - 6,. Now, for a given pair, say the electrons at atom 4 and at atom 5,
the Hamiltonian would be — Ko, - a5. We have a term for each such pair, and
the Hamiltonian is (as you would expect for classical energies) the sum of these
terms for each interacting pair. The energy is written with the factor — K so that
a positive K will correspond to ferromagnetism—that is, the lowest energy results
when adjacent spins are parallel. In a real crystal, there may be other terms which
are the interactions of next nearest neighbors, and so on, but we don’t need to con-

sider such complications at this stage.
With the Hamiltonian of Eq. (15.1) we have a complete description of the
ferromagnet—within our approximation—and the properties of the magnetization
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should come out. We should also be able to calculate the thermodynamic proper-
ties due to the magnetization. If we can find all the energy levels, the properties
of the crystal at a temperature T can be found from the principle that the prob-
ability that a system will be found in a given state of energy E is proportional to
e~ EI*T | This problem has never been completely solved.

We will show some of the problems by taking a simple example in which all
the atoms are in a line—a one-dimensional lattice. You can easily extend the ideas
to three dimensions. At each atomic location there is an electron which has two
possible states, either spin up or spin down, and the whole system is described by
telling how all of the spins are arranged. We take the Hamiltonian of the system
to be the operator of the interaction energy. Interpreting the spin vectors of Eq.
(15.1) as the sigma-operators—or the sigma-matrices—we write for the linear lattice

A . .
A=) - 5 8n Gur. (15.2)

In this equation we have written the constant as 4/2 for convenience (so that some
of the later equations will be exactly the same as the ones in Chapter 13).

Now what is the lowest state of this system? The state of lowest energy is
the one in which all the spins are parallel—let’s say, all up.f We can write this
state as |-+ + 4+ + + -+ -), or | gnd) for the “ground,” or lowest, state. It’s
easy to figure out the energy for this state. One way is to write out all the vector
sigmas in terms of &, ,, and &,, and work through carefully what each term of
the Hamiltonian does to the ground state, and then add the results. We can,
however, also use a good short cut. We saw in Section 12-2, that &, - &, could
be written in terms of the Pauli spin exchange operator like this:

é,-6, = QP — 1, (15.3)

where the operator PP ** interchanges the spins of the jth and jth electrons.
With this substitution the Hamiltonian becomes

H=—-43 080~ (154)

It is now easy to work out what happens to different states. For instance if 7 and j
are both up, then exchanging the spins leaves everything unchanged, so P,, acting
on the state just gives the same state back, and is equivalent to multiplying by +1.
The expression (P,, — 1) is just equal to one-half. (From now on we will leave
off the descriptive superscript on the P.)

For the ground state all spins are up; so if you exchange a particular pair of
spins, you get back the original state. The ground state is a stationary state. If
you operate on it with the Hamiltonian you get the same state again multiplied
by a sum of terms, —(A4/2) for each pair of spins. That is, the energy of the system
in the ground state is —A4/2 per atom

Next we would like to look at the energies of some of the excited states. It
will be convenient to measure the energies with respect to the ground state—that
is, to choose the ground state as our zero of energy. We can do that by adding the
energy A/2 to each term in the Hamiltonian. That just changes the “1” in Eq.
(15.4) to “1.” Our new Hamiltonian is

-~

= =AY Puppr — D). (15.5)

With this Hamiltonian the energy of the lowest state is zero; the spin exchange
operator is equivalent to multiplying by unity (for the ground state) which is
cancelled by the “1’* in each term.

+ The ground state here is really “degenerate”; there are other states with the same
energy—for example, all spins down, or all in any other direction. The slightest external
field in the z-direction will give a different energy to all these states, and the one we have
chosen will be the true ground state.
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For describing states other than the ground state we will need a suitable set
of base states. One convenient approach is to group the states according to whether
one electron has spin down, or two electrons have spin down, and so on. There
are, of course, many states with one spin down. The down spin could be at atom
“4,” or at atom “‘5,” or at atom “6,” ... We can, in fact, choose just such states
for our base states. We could write them this way: |4), |5), 16),... It will,
however, be more convenient later if we label the “odd atom”—the one with the
down-spinning electron—by its coordinate x. That is, we’ll define the state | x5)
to be one with all the electrons spinning up except for the one on the atom at x3,
which has a down-spinning electron (see Fig. 15-1). In general, | x,) is the state
with one down spin that is located at the coordinate x, of the nth atom.

What is the action of the Hamiltonian (15.5) on the state | x5)? One term of
the Hamiltonian is say — 4(£; s — 1). The operator P, 5 exchanges the two spins
of the adjacent atoms 7, 8. But in the state | x5) these are both up, and nothing
happens: P; g is equivalent to multiplying by 1:

Py g|xs) = | xs).
It follows that
(P7,8 - 1)|x5) = 0.

Thus all the terms of the Hamiltonian give zero—except those involving atom 5,
of course. On the state | 5), the operation P, 5 exchanges the spin of atom 4 (up)
and atom 5 (down). The result is the state with all spins up except the atom at 4.
That is

Py s|xs) = | xa)
In the same way

Ps.e | x5) = | xe).

Hence, the only terms of the Hamiltonian which survive are —A(P4 5 — 1)
and —A(Ps s — 1). Acting on | x5) they produce —A|x4) + 4|x5) and
—A|xg) + A| xs5), respectively. The result is

Hlxs)= =AY Cung1 — 1] xs) = —A{ x6) + | xs) — 2| x5)}.  (15.6)

When the Hamiltonian acts on state | x5) it gives rise to some amplitude to be
in states | x4) and | xg). That just means that there is a certain amplitude to have
the down spin jump over to the next atom. So because of the interaction between
the spins, if we begin with one spin down, then there is some probability that at a
later time another one will be down instead. Operating on the general state | x,),
the Hamiltonian gives

H|xp) = =A{l xps1) + | Xa1) = 2| xa)} (15.7)

Notice particularly that if we take a complete set of states with only one spin
down, they will only be mixed among themselves. The Hamiltonian will never
mix these states with others that have more spins down. So long as you only ex-
change spins you never change the total number of down spins.

It will be convenient to use the matrix notation for the Hamiltonian, say
H,m = (x, | A| xn); Eq. (15.7) is equivalent to

H,, = 4;
Hpny1r = Hypo1 = —4; (15.8)
H,,=0  for |[n—m|>1
Now what are the energy levels for states with one spin down? As usual we

let C,, be the amplitude that some state | y) is in the state | x,,). If | ¢)is to be a
definite energy state, all the C,’s must vary with time in the same way, namely,

C, = ae*EU%, (15.9)
15-3

b

1
A bbb iiess
-3-2-1 01 2 3 45 67
—
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We can put this trial solution into our usual Hamiltonian equation

dc,
4 _‘(FL = Z HnmC:m (15 IO)
using Eq (15.8) for the matrix elements. Of course we get an infinite number of
equations, but they can all be written as

Ean = 2Aan - Aan_l - Aa"+1 (1511)

We have again exactly the same problem we worked out in Chapter 13, except that
where we had E, we now have 24. The solutions correspond to amphtudes C,
(the down-spin amplitude) which propagate along the lattice with a propagation
constant k and an energy

E = 24(1 — cos kb), (15.12)

where b is the lattice constant.

The definite energy solutions correspond to “waves™ of down spin—called
“spin waves.,” And for each wavelength there is a corresponding energy. For
large wavelengths (small k) this energy varies as

E = Ab%k*. (15.13)

Just as before, we can consider a localized wave packet (containing, however,
only long wavelengths) which corresponds to a spin-down electron in one part of
the lattice. This down spin will behave like a “particle.”” Because its energy is
related to k by (15.13) the **particle” will have an effective mass:

h2

Meg =

These “particles” are sometimes called “magnons.”

15-2 Two spin waves

Now we would like to discuss what happens if there are fwo down spins.
Again we pick a set of base states. We’ll choose states in which there are down
spins at two atomic locations, such as the state shown in Fig. 15-2. We can label
such a state by the x-coordinates of the two sites with down spins. The one shown
can be called | x5, x5). In general the base states are | x,, x,,)—a doubly nfinite
set! In this system of description, the state | x,, x9) and the state | xy, x4) are
exactly the same state, because each simply says that there is a down spin at 4 and
one at 9; there 1s no meaning to the order. Furthermore, the state | x4, x4) has
no meaning, there 1sn’t such a thing. We can describe any state | y) by giving the
amplitudes to be in each of the base states. Thus C,, , = (X, X, | ¢) now means
the amplitude for a system 1n the state | ) to be 1n a state in which both the mth
and nth atoms have a down spin. The complications which now arise are not
complications of ideas—they are merely complexities in bookkeeping. (One of the
complexities of quantum mechanics is just the bookkeeping. With more and
more down spins, the notation becomes more and more elaborate with lots of
indices and the equations always look very horrifying, but the 1deas are not neces-
sarily more complicated than in the simplest case.)

The equations of motion of the spin system are the differential equations for
the C,, . They are

an m
7 E (Hnm.,)C,). (15.15)
)

Suppose we want to find the stationary states. As usual, the derivatives with re-
spect to time become E times the amplitudes and the C,, ,, can be replaced by the
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coefficients a., ». Next we have to work out carefully the effect of H on a state
with spins m and n down. It is not hard to figure out. Suppose for a moment
that m and n are far enough apart so that we don’t have to worry about the obvious
trouble. The operation of exchange at the location x, will move the down spin
either to the (n + 1) or (n — 1) atom, and so there’s an amplitude that the
present state has come from the state | x,,, x,4,) and also an amplitude that it
has come from the state | x,,, x,_1). Or it may have been the other spin that
moved; so there’s a certain amplitude that C,,,, is fed from C,, 4, or from
Cm—1.n These effects should all be equal. The final result for the Hamiltonian
equation on Cy, ,, is

Eam.n = —A(am+l,n + 10 + Amn41 + am,n—l) + 4Aam,n- (15.16)

This equation is correct except in two situations. If m = n there is no equation
atall, and if m = n = 1, then two of the terms in Eq. (15.16) should be missing.
We are going to disregard these exceptions. We simply ignore the fact that some
few of these equations are slightly altered. After all, the crystal is supposed to be
infinite, and we have an infinite number of terms; neglecting a few might not
matter much. So for a first rough approximation let’s forget about the altered
equations. In other words, we assume that Eq. (15.16) is true for all m and
n, even for m and n next to each other. This is the essential part of our approxi-
mation.

Then the solution is not hard to find. We get immediately

Con = Appe B (15.17)
with
A = (const.) e*F17meF2en, (15.18)
where
E =44 — 2Acos kb — 2A cos kqb. (15.19)

Think for a moment what would happen if we had two independent, single
spin waves (as in the previous section) corresponding to k¥ = k; and k = k;
they would have energies, from Eq. (15.12), of

€ = (2A — 2A cos klb)
and
€3 = (24 — 24 cos kgb).

Notice that the energy E in Eq. (15.19) is just their sum,
E = e(ky) + e(ks). (15.20)

In other words we can think of our solution in this way. There are two particles—
that is, two spin waves. One of them has a momentum described by k;, the other
by k», and the energy of the system is the sum of the energies of the two objects.
The two particles act completely independently. That’s all there is to it.

Of course we have made some approximations, but we do not wish to discuss
the precision of our answer at this point. However, you might guess that in a
reasonable size crystal with billions of atoms—and, therefore, billions of terms in
the Hamiltonian—Ileaving out a few terms wouldn’t make much of an error.
If we had so many down spins that there was an appreciable density, then we would
certainly have to worry about the corrections.

[Interestingly enough, an exact solution can be written down if there are just
the rwo down spins. The result 1s not particularly important. But 1t 1s interesting
that the equations can be solved exactly for this case. The solution is:

A = expt™ @ tmlgin k| x, — x, |, (15.21)

with the energy

F =44 — 2Acos kb — 24 cos kb,



and with the wave numbers k. and k related to k; and k, by
ki =k, — k, ko = k. + k. (15.22)

This solution includes the “interaction” of the two spins. It describes the fact
that when the spins come together there is a certain chance of scattering. The
spins act very much like particles with an interaction. But the detailed theory of
their scattering goes beyond what we want to talk about here.]

15-3 Independent particles

In the last section we wrote down a Hamiltonian, Eq. (15.15), for a two-
particle system. Then using an approximation which is equivalent to neglecting
any “interaction” of the two particles, we found the stationary states described
by Egs. (15.17) and (15.18). This state is just the product of two single-particle
states. The solution we have given for a,,, in Eq. (15.18) is, however, really not
satisfactory. We have very carefully pointed out earlier that the state | xo, x4)
is not a different state from | x4, xg)—the order of x,, and x, has no significance.
In general, the algebraic expression for the amplitude C,, , must be unchanged if
we interchange the values of x,, and x,, since that doesn’t change the state. Either
way, it should represent the amplitude to find a down spin at x,, and a down spin
at x,. But notice that (15.18) is not symmetric in x,, and x,—since k; and kj
can in general be different.

The trouble is that we have not forced our solution of Eq. (15.15) to satisfy
this additional condition. Fortunately it is easy to fix things up. Notice first that
a solution of the Hamiltonian equation just as good as (15.18) is

A = Ke'2mmethin, (15.23)

It even has the same energy we got for (15.18). Any linear combination of (15.15)
and (15.23) is also a good solution, and has an energy still given by Eq. (15.19).
The solution we should have chosen—because of our symmetry requirement—is
just the sum of (15.15) and (15.23):

Apm = K[eiklxmeikgxn + eikzxmeik]::n]. (15.24)

Now, given any k; and k, the amplitude C,, , is independent of which way we
put x,, and x,—if we should happen to define x,, and x, reversed we get the same
amplitude. Our interpretation of Eq. (15.24) in terms of “magnons” must also be
different. We can no longer say that the equation represents one particle with wave
number k, and a second particle with wave number k,. The amplitude (15.24)
represents one state with two particles (magnons). The state is characterized by
the two wave numbers k; and k,. Our solution looks like a compound state of
one particle with the momentum p; = #/k, and another particle with the mo-
mentum p, = #/k,, but in our state we can’t say which particle is which.

By now, this discussion should remind you of Chapter 4 and our story of
identical particles. We have just been showing that the particles of the spin waves—
the magnons—behave like identical Bose particles. All amplitudes must be sym-
metric in the coordinates of the two particles—which is the same as saying that
if we “interchange the two particles,” we get back the same amplitude and with
the same sign. But, you may be thinking, why did we choose to add the two terms
in making Eq. (15.24). Why not subtract? With a minus sign, interchanging
X and x, would just change the sign of a,,, which doesn’t matter. But inter-
changing x,, and x, doesn’t change anything—all the electrons of the crystal are
exactly where they were before, so there is no reason for even the sign of the
amplitude to change. The magnons will behave like Bose particles.t

t In general, the quasi particles of the kind we are discussing may act like either Bose
particles or Fermi particles, and as for free particles, the particles with integral spin are
bosons and those with half-integral spins are fermions. The “magnon” stands for a spin-up
electron turned over. The change in spin is one. The magnon has an integral spin, and
is a boson.
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The main points of this discussion have been twofold: First, to show you
something about spin waves, and, second, to demonstrate a state whose amplitude
is a product of two amplitudes, and whose energy is the sum of the energies corre-
sponding to the two amplitudes. For independent particles the amplitude is the
product and the energy is the sum. You can easily see why the energy is the sum.
The energy is the coefficient of 7 in an imaginary exponential—it is proportional
to the frequency. If two objects are doing something, one of them with the ampli-
tude e *E1!/" and the other with the amplitude e~F2¢" and if the amplitude
for the two things to happen together is the product of the amplitudes for each,
then there is a single frequency in the product which is the sum of the two fre-
quencies. The energy corresponding to the amplitude product is the sum of the two
energies.

We have gone through a rather long-winded argument to tell you a simple
thing. When you don’t take into account any interaction between particles, you
can think of each particle independently. They can individually exist in the various
different states they would have alone, and they will each contribute the energy
they would have had if they were alone. However, you must remember that if they
are identical particles, they may behave either as Bose or as Fermi particles de-
pending upon the problem. Two extra electrons added to a crystal, for instance,
would have to behave like Fermi particles. When the positions of two electrons
are interchanged, the amplitude must reverse sign. In the equation corresponding
to Eq. (15.24) there would have to be a minus sign between the two terms on the
right. As a consequence, two Fermi particles cannot be in exactly the same con-
dition—with equal spins and equal k’s. The amplitude for this state is zero.

15-4 The benzene molecule

Although quantum mechanics provides the basic laws that determine the
structures of molecules, these laws can be applied exactly only to the most simple
compounds. The chemists have, therefore, worked out various approximate
methods for calculating some of the properties of complicated molecules. We
would now like to show you how the independent particle approximation is used
by the organic chemists. We begin with the benzene molecule.

We discussed the benzene molecule from another point of view in Chapter 10.
There we took an approximate picture of the molecule as a two-state system,
with the two base states shown in Fig.15-3. There is a ring of six carbons with a
hydrogen bonded to the carbon at each location. With the conventional picture
of valence bonds it is necessary to assume double bonds between half of the carbon
atoms, and in the lowest energy condition there are the two possibilities shown in
the figure. There are also other, higher-energy states. When we discussed benzene
in Chapter 10, we just took the two states and forgot all the rest. We found that
the ground-state energy of the molecule was not the energy of one of the states in
the figure, but was lower than that by an amount proportional to the amplitude
to flip from one of these states to the other.

Now we’re going to look at the same molecule from a completely different
point of view—using a different kind of approximation. The two points of view
will give us different answers, but if we improve either approximation it should
lead to the truth, a valid description of benzene. However, if we don’t bother to
improve them, which is of course the usual situation, then you should not be
surprised if the two descriptions do not agree exactly. We shall at least show that
also with the new point-of-view the lowest energy of the benzene molecule is
lower than either of the three-bond structures of Fig. 15-3.

Now we want to use the following picture. Suppose we imagine the six
carbon atoms of a benzene molecule connected only by single bonds as in Fig.
15-4. We have removed six electrons—since a bond stands for a pair of electrons
—s0 we have a six-times ionized benzene molecule. Now we will consider what
happens when we put back the six electrons one at a time, imagining that each
one can run freely around the ring. We assume also that all the bonds shown in
Fig. 15-4 are satisfied, and don’t need to be considered further.
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Fig. 15-5. The ethylene molecule.
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Fig. 15-6. The possible energy levels
for the “extra” electrons in the ethylene
molecule.
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Fig. 15-7. In the extra bond of the
ethylene molecule two electrons (one
spin up, one spin down) can occupy the
lowest energy level.

What happens when we put one electron back into the molecular ion? It
might, of course, be located in any one of the six positions around the ring—
corresponding to six base states. It would also have a certain amplitude, say A, to
go from one position to the next. If we analyze the stationary states, there would
be certain possible energy levels. That’s only for one electron.

Next put a second electron in. And now we make the most ridiculous ap-
proximation that you can think of—rthar what one electron does is not affected by
what the other is doing. Of course they really will interact; they repel each other
through the Coulomb force, and furthermore when they are both at the same site,
they must have considerably different energy than twice the energy for one being
there. Certainly the approximation of independent particles is not legitimate
when there are only six sites—particularly when we want to put in six electrons.
Nevertheless the organic chemists have been able to learn a lot by making this
kind of an approximation.

Before we work out the benzene molecule in detail, let’s consider a simpler
example—the ethylene molecule which contains just two carbon atoms with two
hydrogen atoms on either side as shown in Fig. 15-5. This molecule has one “extra”
bond involving two electrons between the two carbon atoms. Now remove one
of these electrons; what do we have? We can look at it as a two-state system—the
remaining electron can be at one carbon or the other. We can analyze it as a two-
state system. The possible energies for the single electron are either (E, — A)
or (Ey + A), as shown in Fig. 15-6.

Now add the second electron. Good, if we have two electrons, we can put
the first one in the lower state and the second one in the upper. Not quite; we
forgot something. Each one of the states is really double. When we say there’s
a possible state with the energy (E, — A), there are really two. Two electrons
can go into the same state if one has its spin up and the other, its spin down.
(No more can be put in because of the exclusion principle.) So there really are
two possible states of energy (Eq — A4). We can draw a diagram, as in Fig. 15-7,
which indicates both the energy levels and their occupancy. In the condition of
lowest energy both electrons will be in the lowest state with their spins opposite.
The energy of the extra bond in the ethylene molecule therefore is 2(E, — A) if
we neglect the interaction between the two electrons.

Let’s go back to the benzene. Each of the two states of Fig. 15-3 has three
double bonds. Each of these is just like the bond in ethylene, and contributes
2(Eq — A) to the energy if Ey is now the energy to put an electron on a site in
benzene and A is the amplitude to flip to the next site. So the energy should
be roughly 6(E, — A4). But when we studied benzene before, we got that the
energy was lower than the energy of the structure with three extra bonds. Let’s see
if the energy for benzene comes out lower than three bonds from our new point
of view.

We start with the six-times ionized benzene ring and add one electron. Now
we have a six-state system. We haven’t solved such a system yet, but we know
what to do. We can write six equations in the six amplitudes, and so on. But
let’s save some work—by noticing that we’ve already solved the problem, when
we worked out the problem of an electron on an infinite line of atoms. Of course,
the benzene is not an infinite line, it has 6 atomic sites in a circle. But imagine that
we open out the circle to a line, and number the atoms along the line from 1 to 6.
In an infinite line the next location would be 7, but if we insist that this location
be identical with number 1 and so on, the situation will be just like the benzene
ring. In other words we can take the solution for an infinite line with an added
requirement that the solution must be periodic with a cycle six atoms long. From
Chapter 13 the electron on a line has states of definite energy when the amplitude

at each site is e***» = ¢***"  For each k the energy is

E = Ey — 24 cos kb. (15.25)
We want to use now only those solutions which repeat every 6 atoms. Let’s

do first the general case for a ring of N atoms. If the solution is to have a period
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of N atomic spacing, e’**¥ must be unity; or kbN must be a multiple of 27. Taking

s to represent any integer, our condition is that
kbN = 2ms. (15.26)

We have seen before that there is no meaning to taking k’s outside the range
=q/b. This means that we get all possible states by taking values of s in the range
=N/2.

We find then that for an N-atom ring there are N definite energy statest
and they have wave numbers k, given by

_or

ko= 38 (15.27)

Each state has the energy (15.25). We have a line spectrum of possible energy
levels. The spectrum for benzene (N = 6) is shown in Fig. 15-8(b). (The numbers
in parentheses indicate the number of different states with the same energy.)

There’s a nice way to visualize the six energy levels, as we have shown in
part (a) of the figure. Imagine a circle centered on a level with E, and with a radius
of 24. If we start at the bottom and mark off six equal arcs (at angles from the
bottom point of ksb = 2ws/N, or 27s/6 for benzene), then the vertical heights of
the points on the circle are the solutions of Eq. (15.25). The six points represent
the six possible states. The lowest energy level is at (E, — 24); there are two
states with the same energy (E, — A), and so on.] These are possible states for
one electron. If we have more than one electron, two—with opposite spins—can
go into each state.

For the benzene molecule we have to put in six electrons. For the ground
state they will go into the lowest possible energy states—two at s = 0, two at
s = +1,and two at s = —1. According to the independent particle approxima-
tion the energy of the ground state is

Eground = 2(E0 - 2A) + 4(E0 - A)
— 6E, — 84, (15.28)

The energy is indeed less than that of three separate double bonds—by the amount
24.

By comparing the energy of benzene to the energy of ethylene it is possible
to determine A. It comes out to be 0.8 electron volt, or, in the units the chemists
like, 18 kilocalories per mole.

We can use this description to calculate or understand other properties of
benzene. For example, using Fig. 15-8 we can discuss the excitation of benzene
by light. What would happen if we tried to excite one of the electrons? It could
move up to one of the empty higher states. The lowest energy of excitation would
be a transition from the highest filled level to the lowest empty level. That takes
the energy 24. Benzene will absorb light of frequency v when Av = 24. There
will also be absorption of photons with the energies 34 and 44. Needless to say,
the absorption spectrum of benzene has been measured and the pattern of spectral
lines is more or less correct except that the lowest transition occurs in the ultra-
violet; and to fit the data one would have to choose a value of A4 between 1.4 and
2.4 electron volts. That is, the numerical value of A4 is two or three times larger
than is predicted from the chemical binding energy.

What the chemist does in situations like this is to analyze many molecules
of a similar kind and get some empirical rules. He learns, for example: For
calculating binding energy use such and such a value of A4, but for getting the
absorption spectrum approximately right use another value of 4. You may feel

T You might think that for N an even number there are N + 1 states. That is not
so because s = =N/2 give the same state.

1 When there are two states (which will have different amplitude distributions) with
the same energy, we say that the two states are “degenerate.” Notice that four electrons
can have the energy Eg — A.
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Fig. 15-11. The energy levels of
butadiene.

that this sounds a little absurd. It is not very satisfactory from the point of view
of a physicist who is trying to understand nature from first principles. But the
problem of the chemist is different. He must try to guess ahead of time what
is going to happen with molecules that haven't been made yet, or which aren’t
understood completely. What he needs is a series of empirical rules; it doesn’t
make much difference where they come from. So he uses the theory in quite a
different way than the physicist. He takes equations that have some shadow of the
truth in them, but then he must alter the constants in them—making empirical
corrections.

In the case of benzene, the principal reason for the inconsistency is our
assumption that the electrons are independent—the theory we started with is
really not legitimate. Nevertheless, it has some shadow of the truth because its
results seem to be going in the right direction. With such equations plus some
empirical rules—including various exceptions—the organic chemist makes his
way through the morass of complicated things he chooses to study. (Don't forget
that the reason a physicist can really calculate from first principles is that he
chooses only simple problems. He never solves a problem with 42 or even 6
electrons in it. So far, he has been able to calculate reasonably accurately only the
hydrogen atom and the helium atom.)

15-5 More organic chemistry

Let’s see how the same ideas can be used to study other molecules. Consider
a molecule like butadiene (1, 3)—it is drawn in Fig. 15-9 according to the usual
valence bond picture.

We can play the same game with the extra four electrons corresponding to
the two double bonds. If we remove four electrons, we have four carbon atoms
in a line. You already know how to solve a line. You say, “Oh no, I only know
how to solve an infinite line.” But the solutions for the infinite line also include
the ones for a finite line. Watch. Let N be the number of atoms on the line and
number them from 1 to N as shown in Fig. 15-10. In writing the equations for the
amplitude at position 1 you would not have a term feeding from position 0.
Similarly, the equation for position N would differ from the one that we used for
an infinite line because there would be nothing feeding from position N + 1,
But suppose that we can obtain a solution for the infinite line which has the follow-
ing property: the amplitude to be at atom 0 is zero and the amplitude to be at
atom (N + 1) is also zero. Then the set of equations for all the locations from
1 to N on the finite line are also satisfied. You might think no such solution exists
for the infinite line because our solutions all looked like e?**» which has the same
absolute value of the amplitude everywhere. But you will remember that the en-
ergy depends only on the absolute value of k, so that another solution, which is
equally legitimate for the same energy, would be e~#%». And the same is true of
any superposition of these two solutions. By subtracting them we can get the
solution sin kx,, which satisfies the requirement that the amplitude be zero at
x = 0. It still corresponds to the energy (E, — 24 cos kb). Now by a suitable
choice for the value of k we can also make the amplitude zero at xy, ;. This
requires that (N + 1)kb be a multiple of =, or that

kb (15.29)

-
wv+n®
where s is an integer from 1 to N. (We take only positive k’s because each solution
contains +k and —k; changing the sign of k gives the same state all over again.)

For the butadiene molecule, N = 4, so there are four states with
kb = w/5, 2w/5, 3w/5,

and  47/5. (15.30)

We can represent the energy levels using a circle diagram similar to the one
for benzene. This time we use a semicircle divided into five equal parts as shown
in Fig. 15-11. The point at the bottom corresponds to s = 0, which gives no
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state at all. The same is true of the point at the top, which corresponds to s =
N + 1. The remaining 4 points give us four allowed energies. There are four
stationary states, which is what we expect having started with four base states.
In the circle diagram, the angular intervals are m/5 or 36 degrees. The lowest
energy comes out (E, — 1.6184). (Ah, what wonders mathematics holds; the
golden mean of the Greekst gives us the lowest energy state of the butadiene
molecule according to this theory!)

Now we can calculate the energy of the butadiene molecule when we put
in four electrons. With four electrons, we fill up the lowest two levels, each with
two electrons of opposite spin. The total energy is

E = 2(E, — 1.6184) + 2(E;, — 0.6184) = 4(E, — A) — 0.4774.
(15.31)

This result seems reasonable. The energy is a little lower than for two simple
double bonds, but the binding is not so strong as in benzene. Anyway this is the
way the chemist analyzes some organic molecules.

The chemist can use not only the energies but the probability amplitudes as
well. Knowing the amplitudes for each state, and which states are occupied, he
can tell the probability of finding an electron anywhere in the molecule. Those
places where the electrons are more likely to be are apt to be reactive in chemical
substitutions which require that an electron be shared with some other group of
atoms. The other sites are more likely to be reactive in those substitutions which
have a tendency to yield an extra electron to the system.

The same ideas we have been using can give us some understanding of a
molecule even as complicated as chlorophyll, one version of which is shown in
Fig. 15-12. Notice that the double and single bonds we have drawn with heavy
lines form a long closed ring with twenty intervals. The extra electrons of the
double bonds can run around this ring. Using the independent particle method
we can get a whole set of energy levels. There are strong absorption lines from
transitions between these levels which lie in the visible part of the spectrum, and
give this molecule its strong color. Similar complicated molecules such as the
xanthophylls, which make leaves turn red, can be studied in the same way.

There is one more idea which emerges from the application of this kind of
theory in organic chemistry. It is probably the most successful or, at least in a
certain sense, the most accurate. This idea has to do with the question: In what
situations does one get a particularly strong chemical binding? The answer is very
interesting. Take the example, first, of benzene, and imagine the sequence of events
that occurs as we start with the six-times ionized molecule and add more and more
electrons. We would then be thinking of various benzene ions—negative or
positive. Suppose we plot the energy of the ion (or neutral molecule) as a function
of the number of electrons. If we take E, = 0 (since we don’t know what it is),
we get the curve shown in Fig. 15-13. For the first two electrons the slope of the
function is a straight line. For each successive group the slope increases, and
there is a discontinuity in slope between the groups of electrons. The slope changes
when one has just finished filling a set of levels which all have the same energy and
must move up to the next higher set of levels for the next electron.

The actual energy of the benzene ion is really quite different from the curve
of Fig. 15-13 because of the interactions of the electrons and because of electro-
static energies we have been neglecting. These corrections will, however, vary
with # in a rather smooth way. Even if we were to make all these corrections, the
resulting energy curve would still have kinks at those values of n which just fill
up a particular energy level.

Now consider a very smooth curve that fits the points on the average like the
one drawn in Fig. 15-14. We can say that the points above this curve have “higher-
than-normal” energies, and the points below the curve have “lower-than-normal”

t The ratio of the sides of a rectangle which can be divided into a square and a similar
rectangle.
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energies. We would, in general, expect that those configurations with a lower-than-
normal energy would have an above average stability—chemically speaking.
Notice that the configurations farther below the curve always occur at the end of
one of the straight line segments—namely when there are enough electrons to fill
up an “energy shell,” as it is called. This is the very accurate prediction of the
theory. Molecules—or ions—are particularly stable (in comparison with other
similar configurations) when the available electrons just fill up an energy shell.

This theory has explained and predicted some very peculiar chemical facts.
To take a very simple example, consider a ring of three. It’s almost unbelievable
that the chemist can make a ring of three and have it stable, but it has been done.
The energy circle for three electrons is shown in Fig. 15-15. Now if you put two
electrons in the lower state, you have only two of the three electrons that you re-
quire. The third electron must be put in at a much higher level. By our argument
this molecule should not be particularly stable, whereas the two-electron structure
should be stable. It does turn out, in fact, that the neutral molecule of triphenyl
cyclopropenyl is very hard to make, but that the positive ion shown in Fig. 15-16 is
relatively easy to make. The ring of three is never really easy because there is
always a large stress when the bonds in an organic molecule make an equilateral
triangle. To make a stable compound at all, the structure must be stabilized in
some way. Anyway if you add three benzene rings on the corners, the positive
ion can be made. (The reason for this requirement of added benzene rings is not
really understood.)

In a similar way the five-sided ring can also be analyzed. If you draw the
energy diagram, you can see in a qualitative way that the six-electron structure
should be an especially stable structure, so that such a molecule should be most
stable as a negative ion. Now the five-ring is well known and easy to make and
always acts as a negative ion. Similarly, you can easily verify that a ring of 4 or 8
is not very interesting, but that a ring of 14 or 10—like a ring of 6—should be
especially stable as a neutral object.

15-6 Other uses of the approximation

There are two other similar situations which we will describe only briefly.
In considering the structure of an atom, we can consider that the electrons fill
successive shells. The Schrodinger theory of electron motion can be worked out
easily only for a single electron moving in a “central” field—one which varies only
with the distance from a point. How can we then understand what goes on in an
atom which has 22 electrons?! One way is to use a kind of independent particle
approximation. First you calculate what happens with one electron. You get a
number of energy levels. You put an electron into the lowest energy state. You
can, for a rough model, continue to ignore the electron interactions and go on
filling successive shells, but there is a way to get better answers by taking into
account—in an approximate way at least—the effect of the electric charge carried
by the electron. Each time you add an electron you compute its amplitude to be
at various places, and then use this amplitude to estimate a kind of spherically
symmetric charge distribution. You use the field of this distribution—together
with the field of the positive nucleus and all the previous electrons—to calculate
the states available for the next electron. In this way you can get reasonably cor-
rect estimates for the energies for the neutral atom and for various ionized states.
You find that there are energy shells, just as we saw for the electrons in a ring
molecule. With a partially filled shell, the atom will show a preference for taking
on one or more extra electrons, or for losing some electrons so as to get into the
most stable state of a filled shell.

This theory explains the machinery behind the fundamental chemical
properties which show up in the periodic table of the elements. The inert gases are
those elements in which a shell has just been completed, and it is especially difficult
to make them react. (Some of them do react of course—with fluorine and oxygen,
for example; but such compounds are very weakly bound; the so-called inert
gases are nearly inert.) An atom which has one electron more or one electron less
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than an inert gas will easily lose or gain an electron to get into the especially stable
(low-energy) condition which comes from having a completely filled shell—they
are the very active chemical elements of valence -1 or —1.

The other situation is found in nuclear physics. In atomic nuclei the protons
and neutrons interact with each other quite strongly. Even so, the independent
particle model can again be used to analyze nuclear structure. It was first discovered
experimentally that nuclei were especially stable if they contained certain particular
numbers of neutrons—namely 2, 8, 20, 28, 50, 82. Nuclei containg protons
in these numbers are also especially stable. Since there was initially no explanation
for these numbers they were called the “‘magic numbers” of nuclear physics. It is
well known that neutrons and protons interact strongly with each other; people
were, therefore, quite surprised when it was discovered that an independent
particle model predicted a shell structure which came out with the first few magic
numbers. The model assumed that each nucleon (proton or neutron) moved in a
central potential which was created by the average effects of all the other nucleons.
This model failed, however, to give the correct values for the higher magic numbers.
Then it was discovered by Maria Mayer, and independently by Jensen and his
collaborators, that by taking the independent particle model and adding only a
correction for what is called the ‘“spin-orbit interaction,” one could make an
improved model which gave all of the magic numbers. (The spin-orbit interaction
causes the energy of a nucleon to be lower if its spin has the same direction as its
orbital angular momentum from motion in the nucleus.) The theory gives even
more—its picture of the so-called “shell structure” of the nuclei enables us to
predict certain characteristics of nuclei and of nuclear reactions.

The independent particle approximation has been found useful in a wide
range of subjects—from solid-state physics, to chemistry, to biology, to nuclear
physics. It is often only a crude approximation, but is able to give an understanding
of why there are especially stable conditions—in shells. Since it omits all of the
complexity of the interactions between the individual particles, we should not be
surprised that it often fails completely to give correctly many important details.
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16

The Dependence of Amplitudes on Position

16-1 Amplitudes on a line

We are now going to discuss how the probability amplitudes of quantum
mechanics vary in space. In some of the earlier chapters you may have had a
rather uncomfortable feeling that some things were being left out. For example,
when we were talking about the ammonia molecule, we chose to describe it in terms
of two base states. For one base state we picked the situation in which the nitrogen
atom was “above” the plane of the three hydrogen atoms, and for the other base
state we picked the condition in which the nitrogen atom was “below” the plane
of the three hydrogen atoms. Why did we pick just these two states? Why is it
not possible that the nitrogen atom could be at 2 angstroms above the plane of the
three hydrogen atoms, or at 3 angstroms, or at 4 angstroms above the plane?
Certainly, there are many positions that the nitrogen atom could occupy. Again
when we talked about the hydrogen molecular ion, in which there is one electron
shared by two protons, we imagined two base states: one for the electron in the
neighborhood of proton number one, and the other for the electron in the neigh-
borhood of proton number two. Clearly we were leaving out many details. The
electron is not exactly at proton number two but is only in the neighborhood.
It could be somewhere above the proton, somewhere below the proton, somewhere
to the left of the proton, or somewhere to the right of the proton.

We intentionally avoided discussing these details. We said that we were
interested in only certain features of the problem, so we were imagining that when
the electron was in the vicinity of proton number one, it would take up a certain
rather definite condition. In that condition the probability to find the electron
would have some rather definite distribution around the proton, but we were not
interested in the details.

We can also put it another way. In our discussion of a hydrogen molecular
ion we chose an approximate description when we described the situation in terms
of two base states. In reality there are lots and lots of these states. An electron can
take up a condition around a proton in its lowest, or ground, state, but there are
also many excited states. For each excited state the distribution of the electron
around the proton is different. We ignored these excited states, saying that we
were interested in only the conditions of low energy. But it is just these other
excited states which give the possibility of various distributions of the electron
around the proton. If we want to describe in detail the hydrogen molecular ion,
we have to take into account also these other possible base states. We could do
this in several ways, and one way is to consider in greater detail states in which the
location of the electron in space is more carefully described.

We are now ready to consider a more elaborate procedure which will allow
us to talk in detail about the position of the electron, by giving a probability
amplitude to find the electron anywhere and everywhere in a given situation. This
more complete theory provides the underpinning for the approximations we have
been making in our earlier discussions. In a sense, our early equations can be
derived as a kind of approximation to the more complete theory.

You may be wondering why we did not begin with the more complete theory
and make the approximations as we went along. We have felt that it would be
much easier for you to gain an understanding of the basic machinery of quantum
mechanics by beginning with the two-state approximations and working gradually
up to the more complete theory than to approach the subject the other way around.
For this reason our approach to the subject appears to be in the reverse order to
the one you will find in many books.
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As we go into the subject of this chapter you will notice that we are breaking
a rule we have always followed in the past. Whenever we have taken up any
subject we have always tried to give a more or less complete description of the
physics—showing you as much as we could about where the ideas led to. We
have tried to describe the general consequences of a theory as well as describing
some specific detail so that you could see where the theory would lead. We are
now going to break that rule; we are going to describe how one can talk about
probability amplitudes in space and show you the differential equations which
they satisfy. We will not have time to go on and discuss many of the obvious
implications which come out of the theory. Indeed we will not even be able to get
far enough to relate this theory to some of the approximate formulations we have
used earlier—for example, to the hydrogen molecule or to the ammonia molecule.
For once, we must leave our business unfinished and open-ended. We are approach-
ing the end of our course, and we must satisfy ourselves with trying to give you an
introduction to the general ideas and with indicating the connections between what
we have been describing and some of the other ways of approaching the subject
of quantum mechanics. We hope to give you enough of an idea that you can go
off by yourself and by reading books learn about many of the implications of the
equations we are going to describe. We must, after all, leave something for the
future.

Let’s review once more what we have found out about how an electron can
move along a line of atoms. When an electron has an amplitude to jump from
one atom to the next, there are definite energy states in which the probability ampli-
tude for finding the electron is distributed along the lattice in the form of a travel-
ing wave. For long wavelengths—for small values of the wave number k—the
energy of the state is proportional to the square of the wave number. For a crystal
lattice with the spacing b, in which the amplitude per unit time for the electron to
jump from one atom to the next is i4/4, the energy of the state is related to k
(for small kb) by

E = Ak*b* (16.1)

(see Section 13-3). We also saw that groups of such waves with similar energies
would make up a wave packet which would behave like a classical particle with a
mass Mg given by:

h2

54bE (16.2)

Meff =

Since waves of probability amplitude in a crystal behave like a particle, one
might well expect that the general quantum mechanical description of a particle
would show the same kind of wave behavior we observed for the lattice. Suppose
we were to think of a lattice on a line and imagine that the lattice spacing b were to
be made smaller and smaller. In the limit we would be thinking of a case in which
the electron could be anywhere along the line. We would have gone over to a
continuous distribution of probability amplitudes. We would have the amplitude
to find an electron anywhere along the line. This would be one way to describe
the motion of an electron in a vacuum. In other words, if we imagine that space can
be labeled by an infinity of points all very close together and we can work out the
equations that relate the amplitudes at one point to the amplitudes at neighboring
points, we will have the quantum mechanical laws of motion of an electron in space.

Let’s begin by recalling some of the general principles of quantum mechanics.
Suppose we have a particle which can exist in various conditions in a quantum
mechanical system. Any particular condition an electron can be found in, we call
a “state,” which we label with a state vector, say | ¢). Some other condition would
be labeled with another state vector, say | ¢). We then introduce the idea of base
states. We say that there is a set of states | 1), | 2), | 3), | 4), and so on, which
have the following properties. First, all of these states are quite distinct—we say
they are orthogonal. By this we mean that for any two of the base states | /) and
[/\ the amplitude (i | j) that an electron known to be in the state | i) is also in the
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state | j) is equal to zero—unless, of course, | i) and | j) stand for the same state.
We represent this symbolically by

(@) = 8. (16.3)

You will remember that 8;; = 0 if i and j are different, and 8,;; = 1if i and j are
the same number.

Second, the base states | i) must be a complete set, so that any state at all can
be described in terms of them. That is, any state | ¢) at all can be described com-
pletely by giving all of the amplitudes (i | ) that a particle in the state | ¢) will
also be found in the state | i). In fact, the state vector | ¢) is equal to the sum of
the base states each multiplied by a coefficient which is the amplitude of the
state | ¢) is also in the state | i):

[9) = 22 [iXi|#). (16.4)

Finally, if we consider any two states | ¢) and | ¥), the amplitude that the state
| ) will also be in the state | ) can be found by first projecting the state | ¢) into
the base states and then projecting from each base state into the state | ¢). We
write that in the following way:

@) =22 (@ liilv). (16.5)

The summation is, of course, to be carried out over the whole set of base state | i).

In Chépter 13 when we were working out what happens with an electron placed
on a linear array of atoms, we chose a set of base states in which the electron was
localized at one or other of the atoms in the line. The base state | n) represented
the condition in which the electron was localized at atom number ““n.”” (There is,
of course, no significance to the fact that we called our base states | n) instead of
| i).) A little later, we found it convenient to label the base states by the coordinate
x, of the atom rather than by the number of the atom in the array. The state
| x,) is just another way of writing the state | n). Then, following the general rules,
any state at all, say | y) is described by giving the amplitudes and that an electron
in the state | y) is also in one of the states | x,). For convenience we have chosen
to let the symbol C, stand for these amplitudes,

Co =" (xa | ¥). (16.6)

Since the base states are associated with a location along the line, we can think
of the amplitude C, as a function of the coordinate x and write it as C(x,). The
amplitudes C(x,) will, in general, vary with time and are, therefore, also functions
of 7. We will not generally bother to show explicitly this dependence.

In Chapter 13 we then proposed that the amplitudes C(x,) should vary with
time in a way described by the Hamiltonian equation (Eq. 13.3). In our new
notation this equation is

in 20 _ EC(x) — ACG + B) — ACG = B (167)

The last two terms on the right-hand side represent the process in which an electron
at atom (n + 1) or at atom (n — 1) can feed into atom n.
We found that Eq. (16.7) has solutions corresponding to definite energy states,
which we wrote as
Clxy) = eFlhethen, (16.8)

For the low-energy states the wavelengths are large (k is small), and the energy is
related to k by

E = (Ey — 24) + Ak??, (16.9)

or, choosing our zero of energy so that (E, — 24) = 0, the energy is given by
Eq. (16.1).
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Let’s see what might happen if we were to let the lattice spacing b go to zero,
keeping the wave number k fixed. If that is all that were to happen the last term
in Eq. (16.9) would just go to zero and there would be no physics. But suppose
A and b are varied together so that as b goes to zero the product 4b2 is kept
constantt—using Eq. (16.2) we will write Ab? as the constant #2/2m.y4.  Under
these circumstances, Eq. (16.9) would be unchanged, but what would happen to the
differential equation (16.7)?

First we will rewrite Eq. (16.7) as

aC(x,)

ih =57 = (Eo — 24)C(x) + ARC(xn) — C(xa + b) — Clxn — B

(16.10)

For our choice of Eg, the first term drops out. Next, we can think of a continuous
function C(x) that goes smoothly through the proper values C(x,) at each x,. As
the spacing b goes to zero, the points x,, get closer and closer together, and (if we
keep the variation of C(x) fairly smooth) the quantity in the brackets is just pro-
portional to the second derivative of C(x). We can write—as you can see by making
a Taylor expansion of each term—the equality

20(x) — Clx + b) — C(x — b) ~ —b? ﬁz—?jﬂ (16.11)

In the limit, then, as b goes to zero, keeping 524 equal to X, Eq. (16.7) goes over
into
0CC) _ _ #5°Cx).

i 3t 2meg  oxT

(16.12)

We have an equation which says that the time rate of change of C(x)—the ampli-
tude to find the electron at x—depends on the amplitude to find the electron at
nearby points in a way which is proportional to the second derivative of the
amplitude with respect to position.

The correct quantum mechanical equation for the motion of an electron in
free space was first discovered by Schrodinger. For motion along a line it has
exactly the form of Eq. (16.12) if we replace m.ts by m, the free-space mass of the
electron. For motion along a line in free space the Schridinger equation is

8Cx) _ _ #* 9°C(x), (16.13)

We do not intend to have you think we have derived the Schrddinger equation
but only wish to show you one way of thinking about it. When Schrodinger first
wrote it down, he gave a kind of derivation based on some heuristic arguments and
some brilliant intuitive guesses. Some of the arguments he used were even false, but
that does not matter; the only important thing is that the ultimate equation gives
a correct description of nature. The purpose of our discussion is then simply to
show you that the correct fundamental quantum mechanical equation (16.13)
has the same form you get for the limiting case of an electron moving along a line
of atoms. This means that we can think of the differential equation in (16.13)
as describing the diffusion of a probability amplitude from one point to the next
along the line, That is, if an electron has a certain amplitude to be at one point, it
will, a little time later, have some amplitude to be at neighboring points. In fact,
the equation looks something like the diffusion equations which we have used in
Volume 1. But there is one main difference: the imaginary coefficient in front of
the time derivative makes the behavior completely different from the ordinary
diffusion such as you would have for a gas spreading out along a thin tube. Ordi-
nary diffusion gives rise to real exponential solutions, whereas the solutions of
Eq. (16.13) are complex waves.

T You can imagine that as the points x, get closer together, the amplitude 4 to jump
from x, = 1 to x, will increase.
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16-2 The wave function

Now that you have some idea about how things are going to look, we want
to go back to the beginning and study the problem of describing the motion of an
electron along a line without having to consider states connected with atoms on a
lattice. We want to go back to the beginning and see what ideas we have to use
if we want to describe the motion of a free particle in space. Since we are interested
in the behavior of a particle along a continuum, we will be dealing with an infinite
number of possible states and, as you will see, the ideas we have developed for
dealing with a finite number of states will need some technical modifications.

We begin by letting the state vector | x) stand for a state in which a particle is
located precisely at the coordinate x. For every value x along the line—for instance
1.73, or 9.67, or 10.00—there is the corresponding state. We will take these states
| x) as our base states and, if we include all the points on the line, we will have
a complete set for motion in one dimension. Now suppose we have a different
kind of a state, say | ), in which an electron is distributed in some way along the
line. One way of describing this state is to give all the amplitudes that the electron
will be also found in each of the base states | x). We must give an infinite set of
amplitudes, one for each value of x. We will write these amplitudes as (x| ¢).
Each of these amplitudes is a complex number and since there is one such complex
number for each value of x, the amplitude (x | ¢) is indeed just a function of x,
We will also write it as C(x),

C(x) = (x| ¥). (16.14)

We have already considered such amplitudes which vary in a continuous way
with the coordinates when we talked about the variations of amplitude with time
in Chapter 7. We showed there, for example, that a particle with a definite mo-
mentum should be expected to have a particular variation of its amplitude in
space. If a particle has a definite momentum p and a corresponding definite energy
E, the amplitude to be found at any position x would look like

(x|¢) = C(x) = etre/h, (16.15)

This equation expresses an important general principle of quantum mechanics which
connects the base states corresponding to different positions in space to another
system of base states—all the states of definite momentum. The definite momentum
states are often more convenient than the states in x for certain kinds of problems.
Either set of base states is, of course, equally acceptable for a description of a
quantum mechanical situation. We will come back later to the matter of the
connection between them. For the moment we want to stick to our discussion of
a description in terms of the states | x).

Before proceeding, we want to make one small change in notation which we
hope will not be too confusing. The function C(x), defined in Eq. (16.14), will
of course have a form which depends on the particular state | ) under considera-
tion. We should indicate that in some way. We could, for example, specify which
function C(x) we are talking about by a subscript say, Cy(x). Although this would
be a perfectly satisfactory notation, it is a little bit cumbersome and is not the one
you will find in most books. Most people simply omit the letter C and use the
symbol ¢ to define the function

¥(x) = Cy(x) = (x[¥). (16.16)

Since this is the notation used by everybody else in the world, you might as well
get used to it so that you will not be frightened when you come across it somewhere
else. Remember though, that we will now be using ¥ in two different ways. In
Eq. (16.14), ¢ stands for a label we have given to a particular physical state of the
electron. On the left-hand side of Eq. (16.16), on the other hand, the symbol
is used to define a mathematical function of x which is equal to the amplitude to
be associated with each point x along the line. We hope it will not be too confusing
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once you get accustomed to the idea. Incidentally, the function ¢(x) is usually
called “the wave function”—because it more often than not has the form of a com-
plex wave in its variables.

Since we have defined y(x) to be the amplitude that an electron in the state ¢
will be found at the location x, we would like to interpret the absolute square of
¥ to be the probability of finding an electron at the position x. Unfortunately, the
probability of finding a particle exactly at any particular point is zero. The electron
will, in general, be smeared out in a certain region of the line, and since, in any
small piece of the line, there are an infinite number of points, the probability that
it will be at any one of them cannot be a finite number. We can only describe the
probability of finding an electron in terms of a probability distributiont which gives
the relative probability of finding the electron at various approximate locations
along the line. Let’s let prob (x, Ax) stand for the chance of finding the electron
in a small interval Ax located near x. If we go to a small enough scale in any
physical situation, the probability will be varying smoothly from place to place,
and the probability of finding the electron in any small finite line segment Ax will
be proportional to Ax. We can modify our definitions to take this into account.

We can think of the amplitude (x | ¢) as representing a kind of “‘amplitude
density” for all the base states | x) in a small region. Since the probability of
finding an electron in a small interval Ax at x should be proportional to the interval
Ax, we choose our definition of {x | ¢) so that the following relation holds:

prob (x, Ax) = [{(x | ¢¥)|% Ax.

The amplitude (x | y) is therefore proportional to the amplitude that an electron
in the state y will be found in the base state x and the constant of proportionality
is chosen so that the absolute square of the amplitude {x | y) gives the probability
density of finding an electron in any small region. We can write, equivalently,

prob (x, Ax) = |[¢(x)|% Ax. (16.17)

We will now have to modify some of our earlier equations to make them
compatible with this new definition of a probability amplitude. Suppose we have
an electron in the state | ¢) and we want to know the amplitude for finding it in a
different state |$) which may correspond to a different spread-out condition
of the electron. When we were talking about a finite set of discrete states, we would
have used Eq. (16.5). Before modifying our definition of the amplitudes we would
have written

@1v) =D, @ x)x]|¥). (16.18)

all z

Now if both of these amplitudes are normalized in the same way as we have de-
scribed above, then a sum of all the states in a small region of x would be equivalent
to multiplying by Ax, and the sum over all values of x simply becomes an integral.
With our modified definitions, the correct form becomes

@lv = [ @0l (16.19)

The amplitude (x | ¢) is what we are now calling y(x) and, in a similar way,
we will choose to let the amplitude (x | ¢) be represented by ¢(x). Remembering
that (¢ | x) is the complex conjugate of (x | ¢), we can write Eq. (16.18) as

@|¥) = / ¢* (XW(x) dx. (16.20)

With qur new definitions everything follows with the same formulas as before if
you always replace a summation sign by an integral over x.

We should mention one qualification to what we have been saying. Any
suitable set of base states must be complete if it is to be used for an adequate

t For a discussion of probability distributions see Vol. I, Section 6-4.
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description of what is going on. For an electron in one dimension it is not really
sufficient to specify only the base states | x), because for each of these states the
electron may have a spin which is either up or down. One way of getting a complete
set is to take two sets of states in x, one for up spin and the other for down spin.
We will, however, not worry about such complications for the time being.

16-3 States of definite momentum

Suppose we have an electron in a state | ) which is described by the prob-
ability amplitude (x | ¢) = ¢(x). We know that this represents a state in which
the electron is spread out along the line in a certain distribution so that the prob-
ability of finding the electron in a small interval dx at the location x is just

prob (x, dx) = |[Y(x)|? dx.

What can we say about the momentum of this electron? We might ask what is
the probability that this electron has the momentum p? Let’s start out by cal-
culating the amplitude that the state | y) is in another state | mom p) which we
define to be a state with the definite momentum p. We can find this amplitude by
using our basic equation for the resolution of amplitudes, Eq. (16.20). In terms
of the state | mom p)

{mom p | ¢) = [;:0 {mom p | x){x | ¥) dx. (16.21)

And the probability that the electron will be found with the momentum p should
be given in terms of the absolute square of this amplitude. We have again, however,
a small problem about the normalizations. In general we can only ask about the
probability of finding an electron with a momentum in a small range dp at the
momentum p. The probability that the momentum is exactly some value p must be
zero (unless the state | ) happens to be a state of definite momentum). Only if we
ask for the probability of finding the momentum in a small range dp at the mo-
mentum p will we get a finite probability. There are several ways the normalizations
can be adjusted. We will choose one of them which we think to be the most
convenient, although that may not be apparent to you just now.

We take our normalizations so that the probability is related to the amplitude
by

prob (p, dp) = [(mom p | )} dp (16.22)
2mh

With this definition the normalization of the amplitude {mom p | x) is determined.
The amplitude {mom p | x) is, of course, just the complex conjugate of the ampli-
tude (x| mom p), which is just the one we have written down in Eq. (16.15).
With the normalization we have chosen, it turns out that the proper constant of
proportionality in front of the exponential is just 1. Namely,

(momp | x) = (x| mom p)* = P (16.23)
Equation (16.21) then becomes

(mom p |¢) = fi’ e x | ) dx. (16.24)

This equation together with Eq. (16.22) allows us to find the momentum distribu-
tion for any state | ¢).

Let’s look at a particular example—for instance one in which an eledtron
is localized in a certain region around x = 0. Suppose we take a wave function
which has the following form:

Y(x) = Ke™="/17, (16.25)
The probability distribution in x for this wave function is the absolute square, or

prob (x, dx) = P(x)dx = K2e™*127° dx, (16.26)
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Fig. 16-1. The probability density
for the wave function of Eq. (16.24).

The probability density function P(x) is the Gaussian curve shown in Fig. 16-1.
Most of the probability is concentrated between x = +o and x = —o. We say
that the “half-width” of the curve is o. (More precisily, ¢ is equal to the root-mean-
square of the coordinate x for something spread out according to this distribution.)
We would normally choose the constant X so that the probability density P(x)
is not merely proportional to the probability per unit length in x of finding the
electron, but has a scale such that P(x) Ax is equal to the probability of finding
the electron in Ax near x. The constant K which does this can be found by requiring
that [*2 P (x)dx = 1, since there must be unit probability that the electron is
found somewhere. Here, we get that K = (2wa?)~%%, [We have used the fact
that [72 e~ dr = +/7; see Vol. I, page 40-6.]
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Now let’s find the distribution in momentum. Let’s let ¢(p) stand for the
amplitude to find the electron with the momentum p,

¢(p) = (momp | ). (16.27)

Substituting Eq. (16.25) into Eq. (16.24) we get

#(p) = [T T Ko gy, (16.28)

—0

the intregral can also be rewritten as

—p2e2h2 [T 2 ipa?/)?
Ke—?*7 /ﬁ/ e —(V/4ohat2ipa®imty, (16.29)

—o

We can now make the substitution u = x + 2ipa?/4, and the integral is

/ eV gy 2g/T (16.30)

—00

(The mathematicians would probably object to the way we got there, but the result
is, nevertheless, correct.)

¢(p) = (Bwa?)l/tero%h®, (16.31)

We have the interesting result that the amplitude function in p has precisely
the same mathematical form as the amplitude function in x; only the width of the
Gaussian is different. We can write this as

¢(p) = Qmn?)~4emr4r (16.32)

where the half-width » of the p-distribution function is related to the half-width ¢
of the x-distribution by

(16.33)
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Our result says: if we make the width of the distribution in x very small by
making o small,  becomes large and the distribution in p is very much spread out.
Or, conversely: if we have a narrow distribution in p, it must correspond to a
spread-out distribution in x. We can, if we like, consider  and o to be some meas-
ure of the uncertainty in the localization of the momentum and of the position of
the electron in the state we are studying. If we call them Ap and Ax respectively
Eq. (16.33) becomes

Ap Ax = % (16.34)

Interestingly enough, it is possible to prove that for any other form of a
a distribution in x or in p, the product Ap Ax cannot be smaller than the one
we have found here. The Gaussian distribution gives the smallest possible value
for the product of the root-mean-square widths. In general, we can say

h
Ap Ax > 5 (16.35)
This is a quantatative statement of the Heisenberg uncertainty principle, which we
have discussed qualitatively many times before. We have usually made the ap-
proximate statement that the minimum value of the product Ap Ax is of the same

order as 4.

16-4 Normalization of the states in x

We return now to the discussion of the modifications of our basic equations
which are required when we are dealing with a continuum of base states. When
we have a finite number of discrete states, a fundamental condition which must be
satisfied by the set of base states is

@) = 8 (16.36)

If a particle is in one base state, the amplitude to be in another base state is 0. By
choosing a suitable normalization, we have defined the amplitude (i | /) to be 1.
These two conditions are described by Eq. (16.36). We want now to see how this
relation must be modified when we use the base states |x) of a particle on a
line. If the particle is known to be in one of the base states |x), what is the
amplitude that it will be in another base state | x')? If x and x’ are two different
locations along the line, thenjthe amplitude (x | x’) is certainly O, so that is
consistent with Eq. (16.36). But if x and x’ are equal, the amplitude (x | x') will
not be 1, because of the same old normalization problem. To see how we have to
patch things up, we go back to Eq. (16.19), and apply this equation to the special
case in which the state | ¢) is just the base state | x’). We would have then

1) = [ x) w0 dx. (16.37)

Now the amplitude (x |y) is just what we have been calling the function y¥(x).
Similarly the amplitude (x’ | ¥), since it refers to the same state ¢, is the same func-
tion of the variable x’, namely ¥(x’). We can, therefore, rewrite Eq. (16.37) as

W) = [ | x) 9o dx. (16.38)

This equation must be true for any state y and, therefore, for any arbitrary function
Y(x). This requirement should completely determine the nature of the amplitude
{x | x")—which is, of course, just a function that depends on x and x'.

Our problem now is to find a function f(x, x’) which when multiplied into
¥(x), and integrated over all x gives just the quantity ¥(x’). It turns out that there
is no mathematical function which will do this! At least nothing like what we
ordinarily mean by a “function.”
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Fig. 16-2. A set of functions, all of
unit area, which look more and more
like &(x).

Suppose we pick x’ to be the special number 0 and define the amplitude
(0 | x) to be some function of x, let’s say f(x). Then Eq. (16.36) would read as
follows:

¥0) = [N () dx. (16.39)

What kind of function f(x) could possibly satisfy this equation? Since the integral
must not depend on what values ¥(x) takes for values of x other than 0, f(x)
must clearly be O for all values of x except 0. But if f(x) is O everywhere, the
integral will be 0, too, and Eq. (16.39) will not be satisfied. So we have an im-
possible situation: we wish a function to be 0 everywhere but at a point, and still
to give a finite integral. Since we can’t find a function that does this, the easiest
way out is just to say that the function f(x) is defined by Eq. (16.37). Namely,
f(x) is that function which makes (16.39) correct. The function which does this
was first invented by Dirac and carries his name. We write it 8(x). All we are say-
ing is that the function &(x) has the strange property that if it is substituted for
f(x) in the Eq. (16.39), the integral picks out the value that y(x), takes on when
x is equal 0; and, since the integral must be independent of y(x) for all values
of x other than 0, the function &(x) must be 0 everywhere except at x = 0. Sum-
marizing, we write

Ofx) = 8(x), (16.40)

where §(x) is defined by
¥(0) = / SEW(x) dx. (16.41)

Notice what happens if we use the special function “1” for the function ¢ in Eq.
(16.41). Then we have the result

1= / 5(x) dx. (16.42)

That is, the function 8(x) has the property that it is 0 everywhere except at x = 0
but has a finite integral equal to unity. We must imagine that the function
8(x) has such a fantastic infinity at one point that the total area comes out equal
to one.

One way of imagining what the Dirac §-function is like is to think of a sequence
of rectangles—or any other peaked function you care to—which gets narrower
and narrower and higher and higher, always keeping a unit area, as sketched in
Fig. 16-2. The integral of this function from — 0 to +w is always 1. If you
multiply it by any function y¥(x) and integrate the product, you get something
which is approximately the value of the function at x = 0, the approximation
getting better and better as you use the narrower and narrower rectangles. You
can if you wish, imagine the é-function in terms of this kind of limiting process.
The only important thing, however, is that the é-function is defined so that Eq.
(16.41) is true for every possible function y(x). That uniquely defines the §-function.
Its properties are then as we have described.

If we change the argument of the é-function from x to x — x’, the corre-
sponding relations are

(x —x)=0, x' # x,
/ 8(x — X' W(x)dx = ¥(x'). (16.43)

If we use 8(x — x’) for the amplitude (x| x’) in Eq. (16.38), that equation is
satisfied. Our result then is that for our base states in x, the condition corre-
sponding to (16.36) is

x| x) = 8(x — x). (16.44)
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We have now completed the -necessary modifications of our basic equations
which are necessary for dealing with the continuum of base states corresponding
to the points along a line. The extension to three dimensions is fairly obvious;
first we replace the coordinate x by the vector r. Then integrals over x become re-
placed by integrals over x, y, and z. In other words, they become volume integrals.
Finally, the one-dimensional §-function must be replaced by just the product of
three é-functions, one in x, one in y, and the other in z, 8(x — x) 6(y — ")
3(z — z'). Putting everything together we get the following set of equations for
the amplitudes for particle in three dimensions:

@l¥) = [@Irr]y)dvol (16.45)
r[¥) = v,
(16.46)
(rlo) = o),
@1¥) = [¢' W@ avol, (16.47)
Fr)=8(x—x)s(y ~ y) iz — 2), (16.48)

What happens when there is more than one particle? We will tell you about
how to handle two particles and you will easily see what you must do if you want
to deal with a larger number. Suppose there are two particles, which we can call
particle No. 1 and particle No. 2. What shall we use for the base states? One
perfectly good set can be described by saying that particle 1 is at x; and particle
2 is at x,, which we can write as | x,xz). Notice that describing the position of
only one particle does not define a base state. Each base state must define the
condition of the entire system. You must not think that each particle moves inde-
pendently as a wave in three dimensions. Any physical state | ) can be defined
by giving all of the amplitudes {x;, xo | ¥) to find the two particles at x; and x,.
This generalized amplitude is therefore a function of the two sets of coordinates
x; and x». You see that such a function is not a wave in the sense of an oscillation
that moves along in three dimensions. Neither is it generally simply a product of
two individual waves, one for each particle. It is, in general, some kind of a wave
in the six dimensions defined by x; and x,. If there are two particles in nature
which are interacting, there is no way of describing what happens to one of the
particles by trying to write down a wave function for it alone. The famous para-
doxes that we considered in earlier chapters—where the measurements made on
one particle were claimed to be able to tell what was going to happen to another
particle, or were able to destroy an interference—have caused people all sorts
of trouble because they have tried to think of the wave function of one particle
alone, rather than the correct wave function in the coordinates of both particles.
The complete description can be given correctly only in terms of functions of the
coordinates of both particles.

16-5 The Schrodinger equation

So far we have just been worrying about how we can describe states which
may involve an electron being anywhere at all in space. Now we have to worry
about putting into our description the physics of what can happen in various
circumstances. As before, we have to worry about how states can change with time.
If we have a state | ¢) which goes over into another state |y’) sometime later,
we can describe the situation for all times by making the wave function—which
is just the amplitude (r | ¢)—a function of time as well as a function of the co-
ordinate. A particle in a given situation can then be described by giving a time-
varying wave function ¥(r, 1) = y(x,», z,1). This time-varying wave function
describes the evolution of successive states that occur as time develops. This
so-called “coordinate representation”—which gives the projections of the state
| ¢) into the base states | r) may not always be the most convenient one to use—
but we will consider it first.
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In Chapter 8 we described how states varied in time in terms of the Hamilto-
nian H;;. We saw that the time variation of the various amplitudes was given in
terms of the matrix equation

., dC;
ih — = ; H;;C;. (16.49)

This equation says that the time variation of each amplitude C; is proportional to
all of the other amplitudes C;, with the coefficients H;.

How would we expect Eq. (16.49) to look when we are using the continuum
of base states | x)? Let’s first remember that Eq. (16.49) can also be written as

L od . A g
i 1) =22 GLAT DG
i
Now it is clear what we should do. For the x-representation we would expect

i D (xlg) = / (x| B x)0 | 9) de. (16.50)

The sum over the base states |;), gets replaced by an integral over x’. Since
(x| H| x’) should be some function of x and x’, we can write it as H(x, x’)—which
corresponds to H;; in Eq. (16.49). Then Eq. (16.50) is the same as

ih a% ¥(x) = /H(x, X' W(x') dx’
with (16.51)
H(x,x') = (x| H| x').

According to Eq. (16.51), the rate of change of the y at x would depend on the
value of y at all other points x’; the factor H(x, x’) is the amplitude per unit time
that the electron will jump from x’ to x. It turns out in nature, however, that this
amplitude is zero except for points x' very close to x. This means—as we saw in the
example of the chain of atoms at the beginning of the chapter, Eq. (16.12)—that
the right-hand side of Eq. (16.15) can be expressed completely in terms of y and
the derivatives of y with respect to x, all evaluated at the position x.

For a particle moving freely in space with no forces, no disturbances, the
correct law of physics is

/ , , h2 d2
Hx, X W(x)dx' = — I a3 v(x).

Where did we get that from? Nowhere. It’s not possible to derive it from anything
you know. It came out of the mind of Schrodinger, invented in his struggle to
find an understanding of the experimental observations of the real world. You can
perhaps get some clue of why it should be that way by thinking of our derivation
of Eq. (16.12) which came from looking at the propagation of an electron in a
crystal.

Of course, free particles are not very exciting. What happens if we put forces
on the particle? Well, if the force of a particle can be described in terms of a scalar
potential ¥(x)—which means we are thinking of electric forces but not magnetic
forces—and if we stick to low energies so that we can ignore complexities which
come from relativistic motions, then the Hamiltonian which fits the real world
gives

/ oy de = —
‘ Hx, X W(x'ydx = — 3 dx? v(x) + V(xn(x). (16.52)

Again, you can get some clue as to the origin of this equation if you go back to
the motion of an electron in a crystal, and see how the equations would have to
be modified if the energy of the electron varied slowly from one atomic site to
the other—as it might do if there were an electric field across the crystal. Then
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the term Ey in Eq. (16.7) would vary slowly with position and would correspond
to the new term we have added in (16.52).

[You may be wondering why we went straight from Eq. (16.51) to Eq. (16.52)
instead of just giving you the correct function for the amplitude H(x, x') =
(x| H|x’). We did that because H(x, x’) can only be written in terms of strange
algebraic functions, although the whole integral on the right-hand side of Eq.
(16.51) comes out in terms of things you are used to. If you are really curious,
H(x, x") can be written in the following way:

2
H(x,x") = — ;lTn 8 (x — XY 4+ V(x) 6(x — x'),
where 6" means the second derivative of the delta function. This rather strange
function can be replaced by a somewhat more convenient algebraic differential
operator, which is completely equivalent:

h2 d2

H(x, X’) = {— 2_’;1‘ m

+ V(x)ié(x — x).
We will nor be using these forms, but will work directly with the form in Eq.
(16.52).1
If we now use the expression we have in (16.52) for the integral in (16.50) we
get the following differential equation for ¢(x) = (x| ¢):
P L
It is fairly obvious what we should use instead of Eq. (16.53) if we are inter-
ested in motion in three dimensions. The only changes are that d?/dx? gets
replaced by
% | 9% | o?
2 _ - —— —_—
V=T dy? T oz
and V(x) gets replaced by V(x, y,z). The amplitude ¥(x, y, z) for an electron
moving in a potential ¥(x, y, z) obeys the differential equation

., OY "o s
It is called the Schrodinger equation, and was the first quantum-mechanical
equation ever known. It was written down by Schrddinger before any of the other
quantum equations we have described in this book were discovered.

Although we have approached the subject along a completely different route,
the great historical moment marking the birth of the quantum mechanical de-
scription of matter occurred when Schrodinger first wrote down his equation in
1926. For many years the internal atomic structure of matter had been a great
mystery. No one had been able to understand what heid matter together, why
there was chemical binding, and especially how it could be that atoms could be
stable. Although Bohr had been able to give a description of the internal motion
of an electron in a hydrogen atom which seemed to explain the observed spectrum
of light emitted by this atom, the reason that electrons moved in this way remained
amystery. Schrédinger’s discovery of the proper equations of motion for electrons
on an atomic scale provided a theory from which atomic phenomena could be
calculated quantitatively, accurately, and in detail. In principle, Schrédinger’s
equation is capable of explaining all atomic phenomena except those involving
magnetism and relativity. It explains the energy levels of an atom, and all the
facts of chemical binding. This is, however, true only in principle—the mathe-
matics soon becomes too complicated to solve exactly any but the simplest prob-
lems. Only the hydrogen and helium atoms have been calculated to a high accuracy.
However, with various approximations, some fairly sloppy, many of the facts of
more complicated atoms and of the chemical binding of molecules can be under-
stood. We have shown you some of these approximations in earlier chapters.
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Fig. 16-3. A potential well for a
particle moving along x.

The Schrédinger equation as we have written it does not take into account
any magnetic effects. It is possible to take such effects into account in an approxi-
mate way by adding some more terms to the equation. However, as we have seen
in Volume II, magnetism is essentially a relativistic effect, and so a correct de-
scription of the motion of an electron in an arbitrary electromagnetic field can
only be discussed in a proper relativistic equation. The correct relativistic equation
for the motion of an electron was discovered by Dirac a year after Schrédinger
brought forth his equation, and takes on quite a different form. We will not be
able to discuss it at all here.

Before we go on to look at some of the consequences of the Schrédinger
equation, we would like to show you what it looks like for a system with a large
number of particles. We will not be making any use of the equation, but just
want to show it to you to emphasize that the wave function y is not simply an
ordinary wave in space, but is a function of many variables. If there are many
particles, the equation becomes

a(ry, ra, 1y .. .) #? a¢ a*y a¢
—ih *—1 73 szz ax, E + —— + V(ry, r1, .. ). (16.55)

The potential function ¥ is what corresponds classically to the total potential energy
of all the particles. If there are no external forces acting on the particles, the
function V is simply the electrostatic energy of interaction of all the particles. That
is, if the ith particle carries the charge Z,q., then the function ¥ is simplyt

Z.Z; o

al Tii
pairs

(16.56)

V(rl)rZar3:-")

16-6 Quantized energy levels

In a later chapter we will look in detail at a solution of Schrédinger’s equation
for a particular example. We would like now, however, to show you how one of
the most remarkable consequence of Schrodinger’s equation comes about—namely,
the surprising fact that a differential equation involving only continuous functions
of continuous variables in space can give rise to quantum effects such as the
discrete energy levels in an atom. The essential fact to understand is how it can be
that an electron which is confined to a certain region of space by some kind of a
potential “‘well” must necessarily have only one or another of a certain well-
defined set of discrete energies.

V(x)

Suppose we think of an electron in a one-dimensional situation in which its
potential energy varies with x in a way described by the graph in Fig. 16-3. We
will assume that this potential is static—it doesn’t vary with time. As we have done
so many times before, we would like to look for solutions corresponding to states
of definite energy, which means, of definite frequency. Let’s try a solution of the
form

¥ = a(x)e*FUn, (16.57)

1 We are using the convention of the earlier volumes according to which e2 = g2/4reo.
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If we substitute this function into the Schrddinger equation, we find that the
function a(x) must satisfy the following differential equation:

d?a(x) _2m
dx2 A

[V(x) — Ea(x). (16.58)

This equation says that at each x the second derivative of a(x) with respect to x
is proportional to a(x), the coefficient of proportionality being given by the quan-
tity (V¥ — E). The second derivative of a(x) is the rate of change of its slope. If
the potential V is greater than the energy E of the particle, the rate of change of
the slope of a(x) will have the same sign as a(x). That means that the curve of
a(x) will be concave away from the axis. That is, it will have, more or less, the
character of the positive or negative exponential function, e=*. This means that
in the region to the left of x;, in Fig. 16-3, where V is greater than the assumed
energy E, the function a(x) would have to look like one or another of the curves

Vv
e \/ o /\ .
% /\ - X E,z -
— |
\X \x E
1
! >
\/ | '
i
V>E VCE |
(o) (b) '
Fig. 16-4. Possible shapes of the Fig. 16-5. A wave function for the
wave function alx) for V > E and for energy E, which goes to zero for nega-
Y <E tive x.

shown in part (a) of Fig. 16-4.

If, on the other hand, the potential function V is less than the energy E, the
second derivative of a(x) with respect to x has the opposite sign from a(x)
itself, and the curve of a(x) will always be concave toward the axis like one of the
pieces shown in part (b) of Fig. 16-4. The solution in such a region has, piece-by-
piece, roughly the form of a sinusoidal curve.

Now let’s see if we can construct graphically a solution for the function a(x)
which corresponds to a particle of energy E, in the potential ¥ shown in Fig.
16-3. Since we are trying to describe a situation in which a particle is bound
inside the potential well, we want to look for solutions in which the wave amplitude
takes on very small values when x is way outside the potential well. We can easily
imagine a curve like the one shown in Fig. 16-5 which tends toward zero for large
negative values of x, and grows smoothly as it approaches x;. Since V is equal to
E, at x;, the curvature of the function becomes zero at this point. Between x,
and x,, the quantity ¥ — E, is always a negative number, so the function a(x)
is always concave toward the axis, and the curvature is larger the larger the differ-
ence between E, and V. If we continue the curve into the region between x, and
X2, it should go more or less as shown in Fig. 16-5.

Now let’s contiritie this curve into the region to the right of x,. There it
curves away from the axis and takes off toward large positive values, as drawn in
Fig. 16-6. For the energy E, we have chosen, the solution for a(x) gets larger and
larger with increasing x. In fact, its curvature is also increasing (if the potential
continues to stay flat). The amplitude rapidly grows to immense proportions.
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Fig. 16-7.

The wave function al(x)

for an energy E, greater than E,.
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What does this mean? It simply means that the particle is not ““bound” in the
potential well. Tt is infinitely more likely to be found outside of the well, than
inside. For the solution we have manufactured, the electron is more likely to be
found at x = + o than anywhere else. We have failed to find a solution for a
bound particle.

Let’s try another energy, say one a little bit higher than E,—say the energy
Ey in Fig. 16-7. If we start with the same conditions on the left, we get the solution
drawn in the lower half of Fig. 16-7. It looked at first as though it were going to
be better, but it ends up just as bad as the solution for E,—except that now a(x)
is getting more and more negative as we go toward large values of x.

Maybe that’s the clue. Since changing the energy a little bit from E, to E,
causes the curve to flip from one side of the axis to the other, perhaps there is
some energy lying between E, and E, for which the curve will approach zero for
large values of x. There is, indeed, and we have sketched how the solution might
look in Fig. 16-8.

You should appreciate that the solution we have drawn in the figure is a
very special one. If we were to raise or lower the energy ever so slightly, the func-
tion would go over into curves like one or the other of the two broken-line curves
shown in Fig. 16-8, and we would not have the proper conditions for a bound
particle. We have obtained a result that if a particle is to be bound in a potential
well, it can do so only if it has a very definite energy.

Does that mean that there is only one energy for a particle bound in a po-
tential well? No. Other energies are possible, but not energies too close to E..
Notice that the wave function we have drawn in Fig. 16-8 crosses the axis four
times in the region between x; and x,. If we were to pick an energy quite a bit
lower than E., we could have a solution which crosses the axis only three times,
only two times, only once, or not at all. The possible solutions are sketched in
Fig. 16-9. (There may also be other solutions corresponding to values of the
energy higher than the ones shown.) Our conclusion is that if a particle is bound
in a potential well, its energy can take on only the certain special values in a discrete
energy spectrum. You see how a differential equation can describe the basic fact
of quantum physics.

We might remark one other thing. If the energy E is above the top of the
potential well, then there are no longer any discrete solutions, and any possible
energy is permitted. Such solutions correspond to the scattering of free particles
by a potential well. We have seen an example of such solutions when we considered
the effects of impurity atoms in a crystal.

Fig. 16-9. The function a(x} for the five lowest energy bound states.
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17

Symmetry and Conservation Laws

17-1 Symmetry

In classical physics there are a number of quantities which are conserved—
such a momentum, energy, and angular momentum. Conservation theorems
about corresponding quantities also exist in quantum mechanics. The most beau-
tiful thing of quantum mechanics 1s that the conservation theorems can, in a
sense, be derived from something else, whereas in classical mechanics they are
practically the starting points of the laws. (There are ways in classical mechanics
to do an analogous thing to what we will do in quantum mechanics, but it can be
done only at a very advanced level.) In quantum mechanics, however, the conserva-
tion laws are very deeply related to the principle of superposition of amplitudes,
and to the symmetry of physical systems under various changes. This s the subject
of the present chapter. Although we will apply these ideas mostly to the conserva-
tion of angular momentum, the essential point is that the theorems about the
conservation of all kinds of quantities are—in the quantum mechanics—related to
the symmetries of the system.

We begin, therefore, by studying the question of symmetries of systems. A
very simple example is the hydrogen molecular ion—we could equally well take the
ammonia molecule—in which there are two states. For the hydrogen molecular
ion we took as our base states one in which the electron was located near proton
number 1, and another in which the electron was located near proton number 2.
The two states—which we called | /) and | 2)—are shown again in Fig. 17-1(a).
Now, so long as the two nuclei are both exactly the same, then there is a certain
symmetry in this physical system. That is to say, if we were to reflect the system
in the plane halfway between the two protons—by which we mean that everything
on one side of the plane gets moved to the symmetric position on the other side—
we would get the situations in Fig. 17-1(b). Since the protons are identical, the
operation of reflection changes | 1) into | 2) and | 2) into | 7). We’ll call this reflec-
tion operation £ and write

Pin =12, P|2y=|D), (17.1)

So our P is an operator in the sense that it “does something” to a state to make a
new state. The interesting thing is that P operating on any state produces some
other state of the system.

Now P, like any of the other operators we have described, has matrix elements
which can be defined by the usual obvious notation. Namely,

Piu=(|B|1) and Py,=(|P|2)

are the matrix elements we get if we multiply £ | /) and P | 2) on the left by (1 |.
From Eq. (17.1) they are
(I1P|1)=P1y=(1]|2)=0,

(1|P|2)=Py=(|I)=1 (17.2)

Il

In the same way we can get Py, and Py, The matrix of P—with respect to the

base system | 1) and | 2)—is
01
P = (1 0). (17:3)

We see once again that the words operator and matrix in quantum mechanics are
17-1

17-1 Symmetry

17-2 Symmetry and conservation
17-3 The conservation laws

17-4 Polarized light

17-5 The disintegration of the A°

17-6 Summary of the rotation
matrices

Review: Chapter 52, Vol. I, Symmerry
in Physical Laws
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Fig. 17-1. If the states | 1) and | 2)
are reflected in the plane P-P, they go
into | 2) and | 1), respectively.
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Fig. 17-2. In a symmetric system, if a pure | 1) state develops as shown in

part (a), a pure | 2) state will develop as in part (b).

practically interchangeable. There are slight technical differences—Ilike the differ-
ence between a “numeral” and a “number”—but the distinction is something
pedantic that we don’t have to worry about. So whether P defines an operation,
or is actually used to define a matrix of numbers, we will call it interchangeably
an operator or a matrix.

Now we would like to point out something. We will suppose that the physics
of the whole hydrogen molecular ion system is symmetrical. It doesn’t have to be
—it depends, for instance, on what else is near it. But if the system is symmetrical,
the following idea should certainly be true. Suppose we start at t = 0 with the
system in the state | 7) and find after an interval of time ¢ that the system turns
out to be in a more complicated situation—in some linear combination of the two
base states. Remember that in Chapter 8 we used to represent ‘“‘going for a
period of time” by multiplying by the operator U. That means that the system
would after a while—say 15 seconds to be definite—be 1n some other state. For
example, it might be v/2/3 parts of the state | ) and 1n/1/3 parts of the state | 2),
and we would write

|¢at15sec) = 0(15,0)|1) = v/2/3|1) + iv/1/3]| 2). 7.4

Now we ask what happens if we start the system in the symmetric state | 2) and
wait for 15 seconds under the same conditions? It is clear that if the world is
symmetric—as we are supposing—we should get the state symmetric to (17.4):

|gat15sec) = 0(15,0)]2) = V2/3|2) + iV1/3]| 1) (17.5)

The same ideas are sketched diagrammatically in Fig. 17-2. So if the physics of a
system is symmetrical with respect to some plane, and we work out the behavior
of a particular state, we also know the behavior of the state we would get by
reflecting the original state in the symmetry plane.

We would like to say the same things a litte bit more generally—which means
a little more abstractly. Let O be any one of a number of operations that you
could perform on a system without changing the physics. For instance, for 0 we
might be thinking of P, the operation of a reflection in the plane between the two
atoms in the hydrogen molecule. Or, in a system with two electrons, we might be
thinking of the operation of interchanging the two electrons. Another possibility
would be, in a spherically symmetric system, the operation of a rotation of the
whole system through a finite angle around some axis—which wouldn’t change
the physics. Of course, we would normally want to give each special case some
special notation for Q. Specifically, we will normally define the R,(6) to be the
operation “rotate the system about the y-axis by the angle 6. By Q we mean
just any one of the operators we have described or any other one—which leaves
the basic physical situation unchanged.

Let’s think of some more examples. If we have an atom with no external
magnetic field or no exiernal electric field, and if we were to turn the coordinates
around any axis, it would be the same physical system. Again, the ammonia
molecule is symmetrical with respect to a reflection in a plane parallel to that of
the three hydrogens—so long as there is no electric field. When there is an electric
field, when we make a reflection we would have to change the electric field also,
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and that changes the physical problem. But if we have no external field, the
molecule is symmetrical.

Now we consider a general situation. Suppose we start with the state | y;)
and after some time or other under givén physical conditions it has become the
state | ¢,). We can write

I¥s) = Oy (17.6)

[You can be thinking of Eq. (17.4).] Now imagine we perform the operation 0
on the whole system. The state | ;) will be transformed to a state | ¥}), which
we can also write as O | ;). Also the state | ¥5) is changed into | 4) = 0 | ¥2).
Now if the physics is symmetrical under Q (don’t forget the if; it is not a general
property of systems), then, waiting for the same time under the same conditions,
we should have

|ys) = U |¥h). 17.7)
[Like Eq. (17.5).] But we can write 0 | ;) for | ¢{) and Q | ) for | ¢4) so (17.7)
can also be written R .
Qly¥2) = UQy). (17.8)
If we now replace | ¢5) by U | ¢;)—Eq. (17.6)—we get
0T |¥1) = TQ 1) (17.9)

It’s not hard to understand what this means. Thinking of the hydrogen ion it
says that: “making a reflection and waiting a while”—the expression on the
right of Eq. (17.9)—is the same as ““waiting a while and then making a reflection”—
the expression on the left of (17.9). These should be the same so long as U doesn’t
change under the reflection.

Since (17.9) is true for any starting state | ), it is really an equation about

the operators: “ A PN
o0 = U9. (17.10)

This is what we wanted to get—i? is a mathematical statement of symmetry. When
Eq. (17.10) is true, we say that the operators U and Q commute. We can then
define “symmetry” in the following way: A physical system is symmetric with
respect to the operation { when Q0 commutes with U, the operation of the passage
of time. [In terms of matrices, the product of two operators is equivalent to the
matrix product, so Eq. (17.10) also holds for the matrices Q and U for a system
which is symmetric under the transformation Q.]

Incidentally, since for infinitesimal times € we have U = 1 — iHe/h—where
A is the usual Hamiltonian (see Chapter 8)—you can see that if (17.10) is true,

it is also true that A A
OH = HO. (17.11)

So (17.11) is the mathematical statement of the condition for the symmetry of a
physical situation under the operator Q. It defines a symmetry.

17-2 Symmetry and conservation

Before applying the result we have just found, we would like to discuss the
idea of symmetry a little more. Suppose that we have a very special situation:
after we operate on a state with Q, we get the same state. This 1s a very special case,
but let’s suppose it happens to be true for a state | o) that [¢/) = O |¢,) is
physically the same state as | ). That means that | ¢/} is equal to | ¢¢) except
for some phase factor.} How can that happen? For instance, suppose that we

t Incidentally, you can show that Qtis necessarily a wnitary operator—which means
that if 1t operates on | y) to give some number times | ), the number must be of the form
e, where 8 1s real. It’s a small point, and the proof rests on the following observation.
Any operation like a reflection or a rotation doesn’t lose any particles, so the normaliza-
tion of |¢/) and | ) must be the same; they can only differ by a pure imaginary phase
factor.
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Fig. 17-3. The state |I) and the
state P | I) obtained by reflecting | 1) in
the central plane.

have an Hy ion in the state which we once called | 7). For this state there is equal
amplitude to be in the base states | /) and | 2). The probabilities are shown as a
bar graph in Fig. 17-3(a). If we operate on | ) with the reflection operator 2, it
flips the state over changing | /) to | 2) and |2) to | [)—we get the probabilities
shown in Fig. 17-3(b). But that’s just the state | I) all over again. If we start with
state | IT) the probabilities before and after reflection look just the same. However,
there is a difference if we look at the amplitudes. For the state | I) the amplitudes
are the same after the reflection, but for the state | /I) the amplitudes have the
opposite sign. In other words,

V2 V2
(17.12)
V2 V2
If we write P | o) = e” | ¢¢), we have that e®® = 1 for thestate | I) and e® = —1

for the state | I7).

Let’s look at another example. Suppose we have a RHC polarized photon
propagating in the z-direction. If we do the operation of a rotation around the
z-axis, we know that this just multiplies the amplitude by e'* when ¢ is the angle
of the rotation. So for the rotation operation in this case, § is just equal to the
angle of rotation.

Now it is clear that if it happens to be true that an operator Q just changes the
phase of a state at some time, say ¢ = 0, it is true forever. In other words, if the
state [ ¥1) goes over into the state | o) after a time #, or

01,0 |¥1) = |¥2) (17.13)
and if the symmetry of the situation makes it so that

Olv1) = e®|yy), (17.14)
then it is also true that

Ol ys) = €| y). 17.15)

This is clear, since

Qlv2) = QU y1) = U0 |¥),
and if Q| ¢1) = €% |¥y), then
Q| ¥o) = Ue® [¢y) = e®U|¢1) = €” [ o).

[The sequence of equalities follows from (17.13) and (17.10) for a symmetrical
system, from (17.14), and from the fact that a number like e** commutes with an
operator.]

So with certain symmetries something which is true initially is true for all
times. But isn’t that just a conservation law? Yes' It says that if you look at the
original state and by making a little computation on the side discover that an
operation which is a symmetry operation of the system produces only a multiplica-
tion by a certain phase, then you know that the same property will be true of the
final state—the same operation multiplies the final state by the same phase factor.
This is always true even though we may not know anything else about the inner
mechanism of the universe which changes a system from the initial to the final
state. Even if we do not care to look at the details of the machinery by which the
system gets from one state to another, we can still say that if a thing 1s 1n a state
with a certain symmetry character originally, and if the Hamiltonian for this thing
is symmetrical under that symmetry operation, then the state will have the same
symmetry character for all times. That’s the basis of all the conservation laws of
quantum mechanics.

Let’s look at a special example. Let’s go back to the P operator. We would
like first to modify a little our defimtion of . We want to take for P not just a
174



mirror reflection, because that requires defining the plane in which we put the
mirror. There is a special kind of a reflection that doesn’t require the specification
of a plane. Suppose we redefine the operation P this way: First you reflect in a
mirror in the z-plane so that z goes to —z, x stays x, and p stays y; then you turn
the system 180° about the z-axis so that x is made to go to —x and y to —y. The
whole thing is called an inversion. Every point is projected through the origin to the
diametrically opposite position. All the coordinates of everything are reversed.
We will still use the symbol £ for this operation. It is shown in Fig. 17-4. Itisa
little more convenient than a simple reflection because it doesn't require that you
specify which coordinate plane you used for the reflection—you need specify only
the point which is at the center of symmetry.

Now let’s suppose that we have a state | ¥ o) which under the inversion opera-
tion goes into e* | yo)—that is,

[¥6) = Pl¥o = e® [ o). (17.16)

Then suppose that we invert again. After two inversions we are right back where
we started from—nothing is changed at all. We must have that

Pty = PPlyo) = | o)
PP Yoy = Pe® [ yg) = e® Pl yo) = ()] o).

But

It follows that
% = 1.

So if the inversion operator is a symmetry operation of a state, there are only two
possibilities for §:
e¥ = =1,

which means that

Plyoy =1vo) or  Plyg) = —|¥o) (17.17)

Classically, if a state is symmetric under an inversion, the operation gives
back the samestate. In quantum mechanics, however, there are the two possibilities:
we get the same state or minus the same state. When we get the same state, P | ) =
| ¥o), we say that the state | o) has even parity. When the sign is reversed so that
P|yo) = — | ¢o), we say that the state has odd parity. (The inversion operator
Pis also known as the parity operator.) The state | I) of the Hy ion has even parity;
and the state | I7) has odd parity—see Eq. (17.12). There are, of course, states
which are not symmetric under the operation P; these are states with no definite
parity. For instance, in the Hy system the state | I) has even parity, the state | II)
has odd parity, and the state | /) has no definite parity.

When we speak of an operation like inversion being performed ““on a physical
system” we can think about it in two ways. We can think of physically moving
whatever is at r to the inverse point at —r, or we can think of Jooking at the same
system from a new frame of reference x’, y’, z’ related to the old by x’ = —x,
Yy = —y,and 2’ = —z Similarly, when we think of rotations, we can think of
rotating bodily a physical system, or of rotating the coordinate frame with respect
to which we measure the system, keeping the “system” fixed in space. Generally,
the two points of view are essentially equivalent. For rotation they are equivalent
except that rotating a system by the angle 4 is like rotating the reference frame by
the negative of 8. In these lectures we have usually considered what happens when
a projection is made into a new set of axes. What you get that way is the same as
what you get if you leave the axes fixed and rotate the system backwards by the
same amount. When you do that, the signs of the angles are reversed.t

1 In other books you may find formulas with different signs; they are probably using
a different definition of the angles.
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Many of the laws of physics—but not all—are unchanged by a reflection or an
inversion of the coordinates. They are symmetric with respect to an inversion.
The laws of electrodynamics, for instance, are unchanged if we change x to —x,
yto —y, and z to —z in all the equations. The same is true for the laws of gravity,
and for the strong interactions of nuclear physics. Only the weak interactions—
responsible for -decay—do not have this symmetry. (We discussed this in some
detail in Chapter 52, Vol. 1.) We will for now leave out any consideration of the
B-decays. Then in any physical system where g-decays are not expected to produce
any appreciable effect—an example would be the emission of light by an atom—
the Hamiltonian H and the operator P will commute. Under these circumstances
we have the following proposition. If a state originally has even parity, and if you
look at the physical situation at some later time, it will again have even parity.
For instance, suppose an atom about to emit a photon is in a state known to have
even parity. You look at the whole thing—including the photon—after the emis-
sion; it will again have even parity (likewise if you start with odd parity). This
principle is called the conservation of parity. You can see why the words “conserva-
tion of parity” and “reflection symmetry”’ are closely intertwined in the quantum
mechanics. Although until a few years ago it was thought that nature always
conserved parity, it is now known that this is nor true. It has been discovered to
be false because the g-decay reaction does not have the inversion symmetry which
is found in the other laws of physics.

Now we can prove an interesting theorem (which is true so long as we can
disregard weak interactions): Any state of definite energy which is not degenerate
must have a definite parity. It must have either even parity or odd parity. (Re-
member that we have sometimes seen systems in which several states have the same
energy—we say that such states are degenerate. Our theorem will not apply to
them.)

For a state | y¢) of definite energy, we know that

H|¥o) = E|vo), (17.18)

where E is just a number—the energy of the state. If we have any operator
which is a symmetry operator of the system we can prove that

0| vo) = €| ¢o) (17.19)

so long as | ¢o) is a unique state of definite energy. Consider the new state | y4)
that you get from operating with J. If the physics is symmetric, then | () must
have the same energy as | ¥¢). But we have taken a situation in which there is
only one state of that energy, namely | y,), so | ¢)) must be the same state—it
can only differ by a phase. That’s the physical argument.

The same thing comes out of our mathematics. Our definition of symmetry
is Eq: (17.10) or Eq. (17.11) (good for any state ),

HQ ¥y = QH|¥). (17.20)

But we are considering only a state | ) which is a definite energy state, so that
H|yo) = E|yy). Since E is just a number that floats through Q if we want,
we have

OH [¥o) = QE| o) = EQ | o).
H{Q |¥o)} = E{Q|¥o)}. (17.21)

So |y = O |ye) is also a definite energy state of A—and with the same E.
But by our hypothesis, there is only one such state; it must be that | ) = e* [ o).

What we have just proved is true for any operator Q that is a symmetry opera-
tor of the physical system. Therefore, in a situation in which we consider only
electrical forces and strong interactions—and no g-decay—so that inversion sym-
metry is an allowed approximation, we have that P [¢) = e* |y). But we have
also seen that e** must be either +1 or —1. So any state of a definite energy (which
is not degenerate) has got either an even parity or an odd parity.

17-6

So



17-3 The conservation laws

We turn now to another interesting example of an operation: a rotation.
We consider the special case of an operator that rotates an atomic system by angle
¢ around the z-axis. We will call this operatort R.(¢). We are going to suppose
that we have a physical situation where we have no influences lined up along the
x- and y-axes. Any electric field or magnetic field 1s taken to be parallel to the
z-axis] so that there will be no change in the external conditions if we rotate the
whole physical system about the z-axis. For example, if we have an atom in empty
space and we turn the atom around the z-axis by an angle ¢, we have the same
physical system.

Now then, there are special states which have the property that such an opera-
tion produces a new state which is the original state multiplied by some phase
factor. Let us make a quick side remark to show you that when this is true the
phase change must always be proportional to the angle ¢. Suppose that you would
rotate twice by the angle ¢. That’s the same thing as rotating by the angle 2¢. Ifa
rotation by ¢ has the effect of multiplying the state | ¢,) by a phase e so that

R.(¢) | ¥o) = € [ Yo,

two such rotations in succession would multiply the state by the factor (e*)? =
e*? since

RA®)R(9) [ Vo) = Ru()e® | ¥o) = ePRu(¢) | o) = €e” | yo).

The phase change § must be proportional to ¢.9 We are considering then those
special states | o) for which

Rz(¢) [ ¢0> = ezmd> | ¢0>5 (1722)

where m is some real number.

We also know the remarkable fact that if the system is symmetrical for a rota-
tion around z and if the original state happens to have the property that (17.22)
is true, then it will also have the same property later on. So this number m is a
very important one. If we know its value initially, we know 1ts value at the end of
the game. It is a number which 1s conserved—m is a constant of the motion. The
reason that we pull out m is because it hasn’t anything to do with any special angle
¢, and also because it corresponds to something in classical mechanics. In quanium
mechanics we choose to call mfi—for such states as | Y o)—the angular momentum
about the z-axis. 1If we do that we find that in the limit of large systems the same
quantity is equal to the z-component of the angular momentum of classical me-
chanics. So if we have a state for which a rotation about the z-axis just produces
a phase factor ¢*™#, then we have a state of definite angular momentum about that
axis—and the angular momentum is conserved. It is m# now and forever. Of
course, you can rotate about any axis, and you get the conservation of angular
momentum fof the various axes. You see that the conservation of angular
momentum is related to the fact that when you turn a system you get the same
state with only a new phase factor.

We would like to show you how general this idea 1s. We will apply 1t to two
other conservation laws which have exact correspondence in the physical 1deas
to the conservation of angular momentum. In classical physics we also have
conservation of momentum and conservation of energy, and it 1s interesting to
see that both of these are related in the same way to some physical symmetry.

t Very precisely, we will define R.(¢) as a rotation of the physical system by —¢ about
the z-axis, which 1s the same as rotating the coordinate frame by +¢.

1 We can always choose z along the direction of the field provided there 1s only one
field at a time, and 1ts direction doesn’t change.

4| For a fancier proof we should make this argument for small rotations ¢ Since any
angle ¢ is the sum of a suitable » number of these,¢ = ne, R,(¢) = [R.(¢)]" and the total
phase change 1s n times that for the small angle ¢, and 1s, therefore, proportional to ¢
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Suppose that we have a physical system—an atom, some complicated nucleus,
or a molecule, or something—and it doesn’t make any difference if we take the
whole system and move it over to a different place. So we have a Hamiltonian
which has the property that it depends only on the internal coordinates in some
sense, and does not depend on the absolute position in space. Under those cir-
cumstances there is a special symmetry operation we can perform which is a
translation in space. Let’s define D.(a) as the operation of a displacement by the
distance a along the x-axis. Then for any state we can make this operation and
get a new state. But again there can be very special states which have the property
that when you displace them by a along the x-axis you get the same state except
for a phase factor. It’s also possible to prove, just as we did above, that when this
happens, the phase must be proportional to a. So we can write for these special
states | o)

Do(@) | ¥o) = e** | ¥o). (17.23)

The coefficient k, when multiplied by #, is called the x-component of the momentum.
And the reason it is called that is that this number is numerically equal to the
classical momentum p, when we have a large system. The general statement is
this: If the Hamiltonian is unchanged when the system is displaced, and if the
state starts with a definite momentum 1n the x-direction, then the momentum in
the x-direction will remain the same as time goes on. The total momentum of a
system before and after collisions—or after explosions or what not—will be the
same.

There is another operation that is quite analogous to the displacement in
space: a delay in time. Suppose that we have a physical situation where there is
nothing external that depends on time, and we start something off at a certain
moment in a given state and let it roll. Now if we were to start the same thing
off again (in another experiment) two seconds later—or/say, delayed by a time
7—and if nothing in the external conditions depends on the absolute time, the
development would be the same and the final state would be the same as the
other final state, except that it will get there later by the time 7. Under those
circumstances we can also find special states which have the property that the
development in time has the special characteristic that the delayed state is just
the old, multiplied by a phase factor. Once more it is clear that for these special
states the phase change must be proportional to 7. We can write

D) | ¥o) = e | yo). (17.24)

It is conventional to use the negative sign in defining w: with this convention
wh is the energy of the system, and it is conserved. So a system of definite energy is
one which when displaced 7 in time reproduces itself multiplied by e™*“". (That’s
what we have said before when we defined a quantum state of definite energy, so
we’re consistent with ourselves.) It means that if a system is in a state of definite
energy, and if the Hamiltonian doesn’t depend on ¢, then no matter what goes on,
the system will have the same energy at all later times.

You see, therefore, the relation between the conservation laws and the sym-
metry of the world. Symmetry with respect to displacements in time implies the
conservation of energy; symmetry with respect to position in x, y, or z implies
the conservation of that component of momentum. Symmetry with respect to
rotations around the x-, y-, and z-axes implies the conservation of the x-, y-, and
z-components of angular momentum. Symmetry with respect to reflection implies
the conservation of parity. Symmetry with respect to the interchange of two elec-
trons implies the conservation of something we don’t have a name for, and so on.
Some of these principles have classical analogs and others do not. There are more
conservation laws in quantum mechanics than are useful in classical mechanics—
or, at least, than are usually made use of.

In order that you will be able to read other books on quantum mechanics,
we must make a small technical aside—to describe the notation that people use.
The operation of a displacement with respect to time is, of course, just the opera-
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tion U that we talked about before:
D) = 0@ + 7,9). (17.25)

Most people like to discuss everything in terms of infinitesimal displacements in
time, or in terms of infinitesimal displacements in space, or in terms of rotations
through infinitesimal angles. Since any finite displacement or angle can be ac-
cumulated by a succession of infinitesimal displacements or angles, it is often easier
to analyze first the infinitesimal case. The operator of an infinitesimal displacement
At in time is—as we have defined it in Chapter 8—

i

Dian = 1 - 4

Atf. (17.26)
Then A is analogous to the classical quantity we call energy, because if H | )
happens to be a constant times | ) namely, H | ¢) = E| ), then that constant
is the energy of the system.

The same thing is done for the other operations. If we make a small displace-
ment in x, say by the amount Ax, a state | ) will, in general, go over into some other
state | ¢'). We can write

¥y = Dol = (1 + 1 5.0x) 1) (17.27)

since as Ax goes to zero, the | ¢/) should become just | ¢) or D,(0) = 1, and for
small Ax the change of D,(Ax) from 1 should be proportional to Ax. Defined this
way, the operator p, is called the momentum operator—for the x-component, of
course.

For identical reasons, people usually write for small rotations

R:(ap) | ¥) = (1 + %J A¢> [¥) (17.28)

and call J, the operator of the z-component of angular momentum. For those
special states for which R,(¢) | ¥o) = "™ | ¢), we can for any small angle—say
A¢—expand the right-hand side to first order in A¢ and get

R.(a¢) = e [Yo) = (1 + imAg) | o).
Comparing this with the definition of J, in Eq. (17.28), we get that
o [ Wo) = mh| o). (17.29)

In other words, if you operate with J, on a state with a definite angular momentum
about the z-axis, you get m# times the same state, where m# is the amount of
z-component of angular momentum. It is quite analogous to operating on a
definite energy state with H to get E | ¢).

We would now like to make some applications of the ideas of the conservation
of angular momentum—to show you how they work. The point is that they are
really very simple. You knew before that angular momentum is conserved. The
only thing you really have to remember from this chapter is that if a state | ¢)
has the property that upon a rotation through an angle ¢ about the z-axis, it be-
comes "™ | y); it has a z-component of angular momentum equal to m#. That’s
all we will need to do a number of interesting things.

17-4 Polarized light

First of all we would like to check on one idea. In Section 11-4 we showed
that when RHC polarized light is viewed in a frame rotated by the angle ¢ about
the z-axist it gets multiplied by e*®. Does that mean then that the photons of light

1 Sorry! This angle is the negative of the one we used in Section 11-4.
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that are right circularly polarized carry an angular momentum of one unit} along
the z-axis? Indeed it does. It also means that if we have a beam of light containing
a large number of photons all circularly polarized the same way—as we would
have 1n a classical beam—it will carry angular momentum. If the total energy
carried by the beam in a certain time is W, then there are N = W /hw photons. Each
one carries the angular momentum #, so there is a total angular momentum of

Jo=N=2 (17.30)

Can we prove classically that light which is right circularly polarized carries
an energy and angular momentum in proportion to #/w? That should be a classical
proposition if everything is right. Here we have a case where we can go from the
quantum thing to the classical thing. We should see if the classical physics checks.
It will give us an idea whether we have a right to call m the angular momentum.
Remember what right circularly polarized light is, classically. It’s described by
an electric field with an oscillating x-component and an oscillating y-component
90° out of phase so that the resultant electric vector & goes in a circle—as drawn in
Fig. 17-5(a). Now suppose that such light shines on a wall which is going to
absorb it—or at least some of it—and consider an atom in the wall according to
the classical physics. We have often described the motion of the electron in the
atom as a harmonic oscillator which can be driven into oscillation by an external
electric field. We’ll suppose that the atom is isotropic, so that it can oscillate
equally well in the x- or y-directions. Then in the circularly polarized light, the
x-displacement and the y-displacement are the same, but one 1s 90° behind the
other. The net result is that the electron moves in a circle, as shown in Fig. 17-5(b).
The electron is displaced at some displacement r from its equilibrium position at the
origin and goes around with some phase lag with respect to the vector & The
relation between & and r might be as shown in Fig. 17-5(b). As time goes on, the
electric field rotates and the displacement rotates with the same frequency, so
their relative orientation stays the same. Now let’s look at the work being done
on this electron. The rate that energy is being put into this electron is v, its velocity,
times the component of g€ parallel to the velocity:

s q&w. (17.31)

But look, there is angular momentum being poured into this electron, because
there is always a torque about the origin. The torque is ¢&#, which must be
equal to the rate of change of angular momentum dJ,/dt:

dl,

7l qé&,r. (17.32)
Remembering that v = wr, we have that

@, _ 1

daw ~ w

Therefore, if we integrate the total angular momentum which is absorbed, it is
proportional to the total energy—the constant of proportionality being 1/w,
which agrees with Eq. (17.30). Light does carry angular momentum—1 unit
(times #%) if it is right circularly polarized along the z-axis, and —1 unit along the
z-axis if it is left circularly polarized.

Now let’s ask the following question: If light is linearly polarized in the
x-direction, what is its angular momentum? Light polarized in the x-direction
can be represented as the superposition of RHC and LHC polarized light. There-
fore, there is a certain amplitude that the angular momentum is +7% and another

T It is usually very convenient to measure angular momentum of atomic systems in
units of 7. Then you can say that a spin one-half particle has angular momentum =1/2
with respect to any axis. Or, 1n general, that the z-component of angular momentum
is m. You don’t need to repeat the 7 all the time.
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amplitude that the angular momentum is —#, so it doesn’t have a definite angular
momentum. It has an amplitude to appear with +7% and an equal amplitude to
appear with —7%. The interference of these two amplitudes produces the linear
polarization, but it has equal probabilities to appear with plus or minus one unit
of angular momentum. Macroscopic measurements made on a beam of linearly
polarized light will show that it carries zero angular momentum, because in a large
number of photons there are nearly equal numbers of RHC and LHC photons
contributing opposite amounts of angular momentum—the average angular
momentum is zero. And in the classical theory you don’t find the angular mo-
mentum unless there is some circular polarization.

We have said that any spin-one particle can have three values of J,, namely
+1, 0, —1 (the three states we saw in the Stern-Gerlach experiment). But light is
screwy; it has only two states. It does not have the zero case. This strange lack
is related to the fact that light cannot stand still. For a particle of spin j which is
standing still, there must be the 2/ + 1 possible states with values of j, going in
steps of 1 from —j to +j. But it turns out that for something of spin j with zero
mass only the states with the components +j and —; along the direction of motion
exist. For example, light does not have three states, but only two—although a
photon is still an object of spin one. How is this consistent with our earlier proofs—
based on what happens under rotations in space—that for spin-one particles three
states are necessary? For a particle at rest, rotations can be made about any
axis without changing the momentum state. Particles with zero rest mass (like
photons and neutrinos) cannot be at rest; only rotations about the axis along the
direction of motion do not change the momentum state. Arguments about rota-
tions around one axis only are insufficient to prove that three states are required,
given that onk of them varies as e* under rotations by the angle ¢.t

One further side remark. For a zero rest mass particle, in general, only one
of the two spin states with respect to the line of motion (4, —j) is really necessary.
For neutrinos—which are spin one-half particles—only the states with the com-
ponent of angular momentum opposite to the direction of motion (—#/2) exist
in nature [and only along the motion (4#/2) for antineutrinos]. When a system has
inversion symmetry (so that parity is conserved, as it is for light) both components
(+/, and —j) are required.

17-5 The disintegration of the A°

Now we want to give an example of how we use the theorem of conservation
of angular momentum in a specifically quantum physical problem. We look at
break-up of the lambda particle (A°), which ciisintegrates into a proton and a 7~
meson by a “weak” interaction:

A°—>p+7r".

Assume we know that the pion has spin zero, that the proton has spin one-half,
and that the A has spin one-half. We would like to solve the following problem:
Suppose that a A? were to be produced in a way that caused it to be completely
polarized—by which we mean that its spin is, say “up,” with respect to some suit-
ably chosen z-axis—see Fig. 17-6(a). The question is, with what probability will it
disintegrate so that the proton goes off at an angle 6 with respect to the z-axis—as
in Fig. 17-6(b)? In other words, what is the angular distribution of the disintegra-
tions? We will look at the disintegration in the coordinate system in which the
A% is at rest—we will measure the angles 1n this rest frame; then they can always
be transformed to another frame if we want.

+ We have tried to find at least a proof that the component of angular momentum
along the direction of motion must for a zero mass particle be an integral multiple of
fi/2—and not something hike #/3. Even using all sorts of properties of the Lorentz
transformation and what not, we failed. Maybe 1t’s not true. We’ll have to talk about
it with Prof. Wigner, who knows all about such things.
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The decay along the

z-axis for a A° with spin “down.”

We begin by looking at the special circumstance in which the proton is emitted
into a small solid angle AQ along the z-axis (Fig. 17-7). Before the disintegration
we have a A® with its spin “up,” as in part (a) of the figure. After a short time—for
reasons unknown to this day, except that they are connected with the weak decays—
the A° explodes nto a proton and a pion. Suppose the proton goes up along the
+z-axis. Then, from the conservation of momentum, the pion must go down.
Since the proton is a spin one-half particle, its spin must be either “up” or “down”—
there are, in principle, the two possibilities shown in parts (b) and (c) of the figure.
The conservation of angular momentum, however, requires that the proton have
spin “up.” This is most easily seen from the following argument. A particle moving
along the z-axis cannot contribute any angular momentum about this axis by virtue
of its motion; therefore, only the spins can contribute to J,. The spin angular
momentum about the z-axis is +7/2 before the disintegration, so it must also be
+#/2 afterward. We can say that since the pion has no spin, the proton spin
must be “up.”

If you are worried that arguments of this kind may not be valid in quantum
mechanics, we can take a moment to show you that they are. The initial state
(before the disintegration), which we can call | A%, spin -+2z) has the property that
if it 1s rotated about the z-axis by the angle ¢, the state vector gets multiplied by
the phase factor ¢*¥/ 2. (In the rotated system the state vector is "' % | A, spin +z).)
That’s what we mean by spin “up” for a spin one-half particle. Since nature’s
behavior doesn’t depend on our choice of axes, the final state (the proton plus
pion) must have the same property. We could write the final state as, say,

| proton going +z, spin +z; pion going —z).

But we really do not need to specify the pion motion, since in the frame we have
chosen the pion always moves opposite the proton; we can simplify our description
of the final state to

| proton going +z, spin +z).

Now what happens to this state vector if we rotate the coordinates about the
z-axis by the angle ¢?

Since the proton and pion are moving along the z-axis, their motion isn’t
changed by the rotation. (That’s why we picked this special case; we couldn’t
make the argument otherwise.) Also, nothing happens to the pion, because it is
spin zero. The proton, however, has spin one-half. If its spin is “up” it will con-
tribute a phase change of ™2 in response to the rotation. (If its spin were
“down” the phase change due to the proton would be e™**/2.) But the phase change
with rotation before and after the excitement must be the same if angular mo-
mentum is to be conserved. (And i1t will be, since there are no outside influences in
the Hamiltonian.) So the only possibility 1s that the proton spin will be “up.”
If the proton goes up, its spin must also be “up.”

We conclude, then, that the conservation of angular momentum permits the
process shown 1n part (b) of Fig. 17-7, but does not permit the process shown 1n
part (c). Since we know that the disintegration occurs, there is some amplitude
for process (b)—proton going up with spin “up.” We’ll let a stand for the amplitude
that the disintegration occurs in this way in any infinitestmal interval of time.}

Now let’s see what would happen 1f the A® spin were initially “down.” Again
we ask about the decays in which the proton goes up along the z-axis, as shown in
Fig. 17-8. You will appreciate that in this case the proton must have spin “down”
if angular momentum is conserved. Let’s say that the amplitude for such a dis-
integration 1s b.

We can’t say anything more about the two amplitudes a and 5. They depend
on the inner machinery of A®, and the weak decays, and nobody yet knows how to

T We are now assuming that the machinery of the quantum mechanics is sufficiently
familiar to you that we can speak about things 1n a physical way without taking the time
to write down all the mathematical details. In case what we are saying here 1s not clear
to you, we have put some of the mussing details in a note at the end of the section.
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calculate them. We’ll have to get them from experiment. But with just these
two amplitudes we can find out all we want to know about the angular distribution
of the disintegration. We only have to be careful always to define completely the
states we are talking about.

We want to know the probability that the proton will go off at the angle ¢
with respect to the z-axis (into a small solid angle AQ) as drawn in Fig. 17-6.
Let’s put a new z-axis in this direction and call it the z’-axis. We know how to
analyze what happens along this axis. With respect to this new axis, the A° no
longer has its spin *‘up,” but has a certain amplitude to have its spin *“‘up” and
another amplitude to have its spin “down.” We have already worked these out
in Chapter 6, and again in Chapter 10, Eq. (10.30). The amplitude to be spin
“up” is cos 6/2, and the amplitude to be spin “down” ist —sin §/2. When the
A° spin is “up” along the z’-axis it will emit a proton in the 4 z’-direction with the
amplitude a. So the amplitude to find an “up”-spinning proton coming out along
the z’-direction is

a cos g : (17.33)

Similarly, the amplitude to find a “down”-spinning proton coming along the posi-
tive z’-axis is
—bsin g : (17.34)

The two processes that these amplitudes refer to are shown in Fig. 17-9.
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Fig. 17-9. Two possible decay states for the A°.

Let’s now ask the following easy question. If the A° has spin up along the
z-axis, what is the probability that the decay proton will go off at the angle 6?
The two spin states (“up” or “down” along 2’) are distinguishable even though
we are not going to look at them. So to get the probability we square the amplitudes
and add. The probability f(6) of finding a proton in a small solid angle AQ at 6 is

f® = la]* cos® 2 + [pf? sin? - (17.35)

Remembering that sin® 6/2 = #(1 — cos §) and that cos26/2 = 3(1 + cos 6),
we can write f(0) as

£6) = (“’lz er |b|2) + (""2 T 'b‘z) cos 6. (17.36)

t We have chosen to let z’ be in the xz-plane and use the matrix elements for R, (6).
You would get the same answer for any other choice.
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The angular distribution has the form
S0 = B(l + acos b). (17.37)

The probability has one part that is independent of 8 and one part that varies
linearly with cos 6. From measuring the angular distribution we can get « and g,
and therefore, |a| and [b|.

Now there are many other questions we can answer. Are we interested only
in protons with spin “up” along the old z-axis? Each of the terms in (17-33) and
(17-34) will give an amplitude to find a proton with spin “up” and with spin
“down” with respect to the z’-axis (+2z' and —z’). Spin “up” with respect to the
old axis | +z) can be expressed in terms of the base states | +2') and | —2’).
We can then combine the two amplitudes (17.33) and (17.34) with the proper
coefficients (cos 8/2 and —sin 6/2) to get the total amplitude

9 6 . 00
(acos E—{—bsm §>-

Its square is the probability that the proton comes out at the angle ¢ with its spin
the same as the A° (“up” along the z-axis).

If parity were conserved, we could say one more thing. The disintegration
of Fig. 17-8 is just the reflection—in say, the y z-plane of the disintegration of
Fig. 17-7.+ If parity were conserved, b would have to be equal to a or to —a.
Then the coefficient « of (17.37) would be zero, and the disintegration would be
equally likely to occur in all directions.

The experimental results show, however, that there is an asymmetry in the
disintegration. The measured angular distribution does go as cos § as we predict—
and not as cos? # or any other power. In fact, since the angular distribution has
this form, we can deduce from these measurements that the spin of the A® is 1/2.
Also, we see that parity is not conserved. In fact, the coefficient « is found experi-
mentally to be —0.62 = 0.05, so b is about twice as large as a. The lack of sym-
metry under a reflection is quite clear.

You see how much we can get from the conservation of angular momentum.
We will give some more examples in the next chapter.

Parenthetical note. By the amplitude a in this section we mean the amplitude that the
state | proton going +z, spin +z) is generated in an infinitesimal time dr from the state
| A, spin 4-2z), or, in other words, that

(proton going +z, spin +z | H| A, spin +z) = iha, (17.38)

where H is the Hamultonian of the world—or, at least, of whatever is responsible for the
A-decay. The conservation of angular momentum means that the Hamiltonian must
have the property that

(proton going +z, spin —z | H| A, spin +z) = 0. (17.39)
By the amplitude 4 we mean that

(proton going +z, spin —z | H| A, spin —z) = i#b. (17.40)
Conservation of angular momentum implies that

(proton going +z, spin +z | H| A, spin —z) = 0. (17.41)

If the amplitudes written in (17.33) and (17.34) are not clear, we can express them
more mathematically as follows. By (17.33) we intend the amplitude that the A with
spin along -z will disintegrate into a proton moving along the -+z’-direction with its
spin also in the 4z’-direction, namely the amplitude

(proton going +2/, spin +2' | H | A, spin +z). (17.42)
By the general theorems of quantum mechanics, this amplitude can be written as

3" {proton going +z’, spin +2z' | H| A, i¥A, i| A, spin +z), (17.43)

+ Remembering that the spin is an axial vector and flips over in the reflection.

17-14



where the sum is to be taken over the base states | A, i) of the A-particle at rest. Since the
A-particle is spin one-half, there are two such base states which can be in any reference
base we wish. If we use for base states spin “up” and spin “down” with respect to z’
(+z', —2'), the amplitude of (17.43) is equal to the sum

(proton going +2’, spin +2z' | H| A, +z')A, +2' | A, +z)
+(proton going +2’, spin +z’ | H| A, —2z’){A, —z' | A, +2z). (17.44)

The first factor of the first term 1s a, and the first factor of the second term is zero—from
the definition of (17.38), and from (17.41), which in turn follows from angular momentum
conservation. The remaining factor (A, +z' | A, +z) of the first term is just the amplitude
that a spin one-half particle which has spin “up” along one axis will also have spin “up”
along an axis tilted at the angle 6, which is cos §/2—see Table 6-2. So (17.44) is just
a cos /2, as we wrote 1n (17.33). The amplitude of (17.34) follows from the same kind
of arguments for a spin “down” A-particle.

17-6 Summary of the rotation matrices

We would like now to bring together in one place the various things we have
learned about the rotations for particles of spin one-half and spin one—so they will
be convenient for future reference. On the next page you will find tables of the two
rotation matrices R,(¢) and R,(6) for spin one-half particles, for spin-one particles,
and for photons (spin-one particles with zero rest mass). For each spin we will
give the terms of the matrix {j| R | i) for rotations about the z-axis or the y-axis.
They are, of course, exactly equivalent to the amplitudes like (+7"| 0 S) we have
used in earlier chapters. We mean by R,(¢) that the state 1s projected into a new
coordinate system which is rotated through the angle ¢ about the z-axis—using
always the right-hand rule to define the positive sense of the rotation. By R,(6)
we mean that the reference axes are rotated by the angle 6 about the y-axis. Know-
ing these two rotations, you can, of course, work out any arbitrary rotation. As
usual, we write the matrix elements so that the state on the /eft is a base state of
the new (rotated) frame and the state on the right is a base state of the old (un-
rotated) frame. You can interpret the entries in the tables in many ways. For
instance, the entry e ~**/2 in Table 17-1 means that the matrix element (— |R| —) =
e™*/2 It also means that R | —) = ¢™*#/2| —), or that (— | R = (— | e™*/2
It’s all the same thing.
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Table 17-1

Rotation matrices for spin one-half

Two states: | +), “up” along the z-axis, m = +1/2

| =), “down” along the z-axis, m = —1/2
R.(¢) [ +) | =)
<+ l e+t¢/2 0
(~] 0 e~ /2
(+1 cos §/2 sin §/2
(— | —sin6/2  cos /2
Table 17-2

Rotation matrices for spin one

Three states: | +), m = +1
[|0)ym=0
l ->3 m= —~1
R.(¢) [+) [0) [=)
(+| et 0 0
(0] 0 1 0
{(—| 0 0 e~
R,(6) [+) [0) [ =)
1 .
(+1 3(1 + cos6) + 7 sin 8 (1 — cos 6)
{0 | —\%Esino cos § +\%isin0
1 .
(- | 3(1 — cos §) -7 sin 6 3(1 4+ cos 6)
Table 17-3
Photons

Two states: | R) =

;}~§dw+ily»,m=+

1 (RHC polarized)

| L) = \—%—2 (x) — ily), m = —1 (LHC polarized)

R.(¢) | R) [ L)
(R| etid 0
(L| 0 e~
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Angular Momentum

18-1 Electric dipole radiation

In the last chapter we developed the idea of the conservation of angular
momentum in quantum mechanics, and showed how it might be used to predict
the angular distribution of the proton from the disintegration of the A-partcle
We want now to give you a number of other, similar, illustrations of the con-
sequences of momentum conservation in atomic systems Our first example is
the radiation of light from an atom. The conservation of angular momentum
(among other things) will determine the polarization and angular distribution
of the emitted photons.

Suppose we have an atom which is in an excited state of definite angular
momentum—say with a spin of one—and it makes a transition to a state of angular
momentum zero at a lower energy, emitting a photon. The problem is to figure
out the angular distribution and polarization of the photons. (This problem 1s
almost exactly the same as the A disintegration, except that we have spin-one
instead of spin one-half particles.) Since the upper state of the atom 1s spin one,
there are three possibilities for 1ts z-component of angular momentum. The value
of m could be +1, or 0, or —1. We will take m = 41 for our example. Once
you see how 1t goes, you can work out the other cases. We suppose that the atom
is sitting with its angular momentum along the 4 z-axis—as in Fig. 18-1(a)—and
ask with what amplitude it will emit right circularly polarized light upward along
the z-axis, so that the atom ends up with zero angular momentum—as shown in
part (b) of the figure. Well, we don’t know the answer to that. But we do know
that right circularly polarized light has one unit of angular momentum about its
direction of propagation. So after the photon is emitted, the situation would
have to be as shown n Fig. 18-1(b)—the atom is left with zero angular momentum

, t
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18-1 Electric dipole radiation

18-2 Light scattering

18-3 The annihilation of positronium

18-4 Rotation matrix for any spin

18-5 Measuring a nuclear spin

18-6 Composition of angular me-
mentum

Added Note 1: Derivation of the rota-

tion matrix

Added Note 2: Conservation of parity
in photon emission

:
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Fig. 18-1. An atom with m = 41 Fig. 18-2. An atom with m = —1
emits a RHC photon along the 4 z-axis. emits a LHC photon along the +z-axis.
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Fig. 18-3. If the process of (a) is
transformed by an inversion through the
center of the atom, it appears as in {b).

about the z-axis, since we have assumed an atom whose lower state is spin zero.
We will let a stand for the amplitude for such an event. More precisely, we let a
be the amplitude to emit a photon into a certain small solid angle AQ, centered
on the z-axis, during a time dr. Notice that the amplitude to emit a LHC photon
in the same direction is zero. The net angular momentum about the z-axis would
be —1 for such a photon and zero for the atom for a total of — 1, which would
not conserve angular momentum.

Similarly, if the spin of the atom is initially “down” (—1 along the z-axis),
it can emit only a LHC polarized photon in the direction of the +z-axis, as shown
in Fig. 18-2. We will let 4 stand for the amplitude for this event—meaning again
the amplitude that the photon goes into a certain solid angle AQ. On the other
hand, if the atom is in the m = O state, it cannot emit a photon in the +z-direction
at all, because a photon can have only the angular momentum +1 or —1 along
1ts direction of motion.

Next, we can show that b is related to a. Suppose we perform an inversion of
the situation in Fig. 18-1, which means that we should imagine what the system
would look like if we were to move each part of the system to an equivalent point
on the opposite side of the origin. This does not mean that we should reflect the
angular momentum vectors, because they are artificial. We should, rather, invert
the actual character of the motion that would correspond to such an angular
momentum. In Fig. 18-3(a) and (b) we show what the process of Fig. 18-1 looks
like before and after an inversion with respect to the center of the atom. Notice
that the sense of rotation of the atom is unchanged.t In the inverted system of
Fig. 18-3(b) we have an atom with m = 41 emitting a LHC photon downward.

If we now rotate the system of Fig. 18-3(b) by 180° about the x- or y-axis, it
becomes identical to Fig. 18-2. The combination of the inversion and rotation
turns the second process into the first. Using Table 17-2, we see that a rotation
of 180° about the y-axis just throws an m = —1 state into an m = 41 state,
so the amplitude b must be equal to the amplitude a excepr for a possible sign
change due to the inversion. The sign change in the inversion will depend on the
parities of the initial and final state of the atom.

In atomic processes, parity is conserved, so the parity of the whole system
must be the same before and after the photon emission. What happens will depend
on whether the parities of the initial and final states of the atom are even or odd—
the angular distribution of the radiation will be different for different cases. We
will take the common case of odd parity for the initial state and even parity for the
final state; it will give what is called “electric dipole radiation.” (If the imtial
and final states have the same parity we say there is “magnetic dipole radiation,”
which has the character of the radiation from an oscillating current in a loop.)
If the parity of the initial state is odd, its amplitude reverses its sign in the inversion
which takes the system from (a) to (b) of Fig. 18-3. The final state of the atom
has even parity, so its amplitude doesn’t change sign. If the reaction is going to
conserve parity, the amplitude b must be equal to a in magnitude but of the
opposite sign.

We conclude that if the amplitude is a that an m = 41 state will emit a
photon upward, then for the assumed parities of the initial and final states the
amplitude that an m = —1 state will emit a LHC photon upward is —a.}

We have all we need to know to find the amplitude for a photon to be emitted
at any angle 8 with respect to the z-axis. Suppose we have an atom originally
polarized with m = +1. We can resolve this state into 41, 0, and —1 states
with respect to a new z’-axis in the direction of the photon emission. The ampli-
tudes for these three states are just the ones given in the lower half of Table 17-2.

t When we change x, y, z into —x, —y, —z, you might think that all vectors get re-
versed. That is true for polar vectors like displacements and velocities, but not for an
axial vector like angular momentum—or any vector which 1s derived from a cross product
of two polar vectors. Axial vectors have the same components after an inversion.

1 Some of you may object to the argument we have just made, on the basis that the final
states we have been considering do not have a definite parity. You will find in Added
Note 2 at the end of this chapter another demonstration, which you may prefer.
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The amplitude that a RHC photon is emitted in the direction 6 is then a times the
amplitude to have m = -1 in that direction, namely,

a(+ | R(O)] +) = 5 (1 + cos 0). (18.1)

The amplitude that a LHC photon is emitted in the same direction 1s —a times the
amplitude to have m = —1 in the new direction. Using Table 17-2, 1t is

—a{— | R,(0)| +) = -_‘LZ (1 — cos 6). (18.2)

If you are interested in other polarizations you can find out the amplitude for them
from the superposition of these two amplitudes To get the intensity of any
component as a function of angle, you must, of course, take the absolute square
of the amplitudes.

18-2 Light scattering

Let’s use these results to solve a somewhat more complicated problem—
but also one which is somewhat more real. We suppose that the same atoms are
sitting in their ground state (j = 0), and scatter an incoming beam of light.
Let’s say that the light 1s going initially in the + z-direction, so that we have photons
coming up to the atom from the —z-direction, as shown in Fig. 18-4(a). We can
consider the scattering of light as a two-step process: The photon is absorbed,
and then is re-emitted. If we start with a RHC photon as in Fig. 18-4(a), and
angular momentum is conserved, the atom will be in an m = 41 state after the
absorption—as shown in Fig. 18-4(b). We call the amplitude for this process c.
The atom can then emit a RHC photon in the direction 6—as in Fig. 18-4(c).
The total amplitude that a RHC photon is scattered in the direction 6 is just
¢ times (18.1). Let’s call this scattering amplitude (R’ | S| R); we have

(R"| S| R) = 5‘25 (1 + cos 8). (18.3)

There is also an amplitude that a RHC photon will be absorbed and that
a LHC photon will be emitted. The product of the two amplitudes is the amplitude
(L’| S| R) that a RHC photon is scattered as a LHC photon. Using (18.2), we have

(L'| S| Ry = —925 (1 — cos 8). (18.4)

Now let’s ask about what happens if a LHC photon comes in. When it is
absorbed, the atom will go into an m = —1 state. By the same kind of arguments
we used in the preceding section, we can show that this amplitude must be —c.
The amplitude that an atom in the m = —1 state will emit a RHC photon at the
angle 8 is a times the amplitude (+ | R,(8) | — ), whichis #(1 — cos 6). So we have

(R|S|L)y = —% (1 — cos 6). (18.5)

Finally, the amplitude for a LHC photon to be scattered as a LHC photon is
(L'| S| L) = 925 (1 + cos 8). (18.6)

(There are two minus signs which cancel.)

If we make a measurement of the scattered intensity for any given combina-
tion of circular polarizations it will be proportional to the square of one of our four
amplitudes. For instance, with an incoming beam of RHC light the intensity of
the RHC light in the scattered radiation will vary as (I + cos 6)2.

That’s all very well, but suppose we start out with linearly polarized hight.
What then? If we have x-polarized light, it can be represented as a superposition
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of RHC and LHC light. We write (see Section 11-4)

1
= — (R L)). 18.7
[ x) \/E(I )+ 1L)) (18.7)
Or, if we have y-polarized light, we would have
= L (R —|L. 18.8
| ») \/i(l ) — | L) (18.8)

Now what do you want to know? Do you want the amplitude that an x-polarized
photon will scatter into a RHC photon at the angle #? You can get it by the usual
rule for combining amplitudes. First, multiply (18.7) by (R’ | S to get

(R|S|x) = \% (R | S|R) + (R'| S| L)), (18.9)

and then use (18.3) and (18.5) for the two amplitudes. You get
ac
R'|S|x) = — cosé. 18.10
(R"| S| x) V3 (18.10)

If you wanted the amplitude that an x-photon would scatter into a LHC photon,
you would get

LS| x) = _\a/_ci cos 8. (18.11)

Finally, suppose you wanted to know the amplitude that an x-polarized photon
will scatter while keeping its x-polarization. What you want is (x’ | S'| x). This
can be written as

(X[ S|x) = | RXR'|S|x) + X' |L'XL| S| x). (18.12)
If you then use the relations
| RY) = % A %) + i), (18.13)
1) = S 0) ~ i, (18.19)
it follows that
1
| R") = > 18.15
(x'| R') v (18.15)
1
'Ly = —- 18.16
(x| L") v ( )
So you get that
(x| §]x) = ac cos 6. (18.17)

The answer is that a beam of x-polarized light will be scattered at the direction 6
(in the xz-plane) with an intensity proportional to cos? 6. If you ask about y-polar-
ized light, you find that

G| S|x) =0. (18.18)

So the scattered light is completely polarized in the x-direction.

Now we notice something interesting. The results (18.17) and (18.18) corre-
spond exactly to the classical theory of light scattering we gave in Vol. 1, Section
32-6, where we imagined that the electron was bound to the atom by a linear
restoring force—so that it acted like a classical oscillator. Perhaps you are think-
mg: “It’s so much easier in the classical theory; if it gives the right answer why
bother with the quantum theory?” For one thing, we have considered so far
only the special—though common—case of an atom with a j = 1 excited state
and aj = 0 ground state. If the excited state had spin two, you would get a differ-
ent result. Also, there is no reason why the model of an electron attached to a
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spring and driven by an oscillating electric field should work for a single photon.
But we have found that it does in fact work, and that the polarization and intensi-
ties come out right. So in a certain sense we are bringing the whole course around
to the real truth. Whereas we have, in Vol. 1, done the theory of the index of
refraction, and of light scattering, by the classical theory, we have now shown that
the quantum theory gives the same result for the most common case. In effect
we have now done the polarization of sky hght, for instance, by quantum me-
chanical arguments, which is the only truly legitimate way.

It should be, of course, that all the classical theories which work are sup-
ported ultimately by legitimate quantum arguments. Naturally, those things
which we have spent a great deal of time in explaining to you were selected from
Just those parts of classical physics which still maintain validity in quantum
mechanics. You’ll notice that we did not discuss in great detail any model of the
atom which has electrons going around 1n orbits. That’s because such a model
doesn’t give results which agree with the quantum mechanics. But the electron
on a spring—which is not, in a sense, at all the way an atom “looks”—does
work, and so we used that model for the theory of the index of refraction.

18-3 The annihilation of positronium

We would like next to take an example which is very pretty. It is quite inter-
esting and, although somewhat complicated, we hope not too much so. Our
example is the system called positronium, which is an “atom’’ made up of an elec-
tron and a positron—a bound state of an e* and an e™. It is like a hydrogen
atom, except that a positron replaces the proton. This object has—like the hydro-
gen atom—many states. Also like the hydrogen, the ground state is split into a
“hyperfine structure” by the interaction of the magnetic moments. The spins of
the electron and positron are each one-half, and they can be either parallel or
antiparallel to any given axis. (In the ground state there is no other angular
momentum due to orbital motion.) So there are four states: three are the sub-
states of a spin-one system, all with the same energy; and one is a state of spin
zero with a different energy. The energy splitting is, however, much larger than
the 1420 megacycles of hydrogen because the positron magnetic moment is so
much stronger—1000 times stronger—than the proton moment.

The most important difference, however, is that positronium cannot last
forever. The position is the antiparticle of the electron; they can annihilate each
other. The two particles disappear completely—converting their rest energy into
radiation, which appears as v-rays (photons). In the disintegration, two particles
with a finite rest mass go into two or more objects which have zero rest mass.}

We begin by analyzing the disintegration of the spin-zero state of the posi-
tronium. It disintegrates into two 7-rays with a lifetime of about 10~ second.
Initially, we have a positron and an electron close together and with spins anti-
parallel, making the positronium system. After the disintegration there are two
photons going out with equal and opposite momenta (Fig. 18-5). The momenta
must be equal and oppostte, because the total momentum after the disintegration
must be zero, as it was before, if we are taking the case of annihilation at rest.
If the positronium is not at rest, we can ride with it, solve the problem, and then
transform everything back to the lab system. (See, we can do anything now;
we have all the tools.)

First, we note that the angular distribution is not very interesting. Since
the mitial state has spin zero, it has no special axis—it is symmetric under all
rotations. The final state must then also be symmetric under all rotations. That
means that all angles for the disintegration are equally likely—the amplitude is
the same for a photon to go in any direction. Of course, once we find one of
the photons in some direction the other must be opposite.

t In the deeper understanding of the world today, we do not have an easy way to
distinguish whether the energy of a photon 1s less “matter” than the energy of an electron,
because as you remember all the particles behave very similarly. The only distinction 1s
that the photon has zero rest mass.
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tronium annihilation along the z-axis.

The only remaining question, which we now want to look at, is about the
polarization of the photons. Let’s call the directions of motion of the two photons
the plus and minus z-axes. We can use any representations we want for the polar-
ization states of the photons; we will choose for our description right and left
circular polarization—always with respect to the directions of motion. Right
away, we can see that if the photon going upward is RHC, then angular momentum
will be conserved if the downward going photon is also RHC. Each will carry 41
unit of angular momentum with respect to its momentum direction, which means
plus and minus one unit about the z-axis. The total will be zero, and the angular
momentum after the disintegration will be the same as before. See Fig. 18-6.

The same arguments show that if the upward going photon is RHC, the
downward cannot be LHC. Then the final state would have two units of angular
momentum. This is not permitted if the initial state has spin zero. Note that
such a final state is also not possible for the other positronium ground state of
spin one, because it can have a maximum of one unit of angular momentum in
any direction.

Now we want to show that two-photon annihilation is not possible at all
from the spin-one state. You might think that if we took thej = 1, m = O state—
which has zero angular momentum about the z-axis—it should be like the spin-zero
state, and could disintegrate into two RHC photons. Certainly, the disintegration
sketched in Fig. 18-7(a) conserves angular momentum about the z-axis. But now
look what happens if we rotate this system around the y-axis by 180°; we get the
picture shown in Fig. 18-7(b). It is exactly the same as in part (a) of the figure.
All we have done is interchange the two photons. Now photons are Bose particles;
if we interchange them, the amplitude has the same sign, so the amplitude for the
disintegration in part (b) must be the same as in part (a). But we have assumed
that the initial object 1s spin one. And when we rotate a spin-one object in a state
with m = 0 by 180° about the y-axis, its amplitudes change sign (see Table 17-2
for ¢ = ). So the amplitudes for (a) and (b) in Fig. 18-7 should have opposite
signs; the spin-one state cannot disintegrate into two photons.

When positronium is formed you would expect it to end up in the spin-zero
state 1/4 of the time and in the spin-one state (with m = —1,0, or +1)3/4 of the
time. So 1/4 of the time you would get two-photon annihilations. The other 3/4
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For the | = 1 state of positronium, the process {a) and its 180°

rotation about y (b) are exactly the same.

1 Note that we always analyze the angular momentum about the direction of motion of
the particle. If we were to ask about the angular momentum about any other axis, we
would have to worry about the possibility of “orbital” angular momentum—from a
p X rterm. For instance, we can’t say that the photons leave exactly from the center
of the positromum. They could leave like two things shot out from the rim of a spinning
wheel. We don’t have to worry about such possibilities when we take our axis along the
direction of motion.
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of the time there can be no two-photon annihilations. There is still an annihilation,
but it has to go with three photons. It is harder for it to do that and the Iifetime
is 1000 times longer—about 10~7 second. This is what is observed experimentally.
We will not go into any more of the details of the spin-one annihilation.

So far we have that if we only worry about angular momentum, the spin-zero
state of the positronium can go into two RHC photons. There is also another
possibility: it can go into two LHC photons as shown in Fig. 18-8. The next
question is, what is the relation between the amplitudes for these two possible
decay modes? We can find out from the conservation of parity.

To do that, however, we need to know the parity of the positronium. Now
theoretical physicists have shown in a way that is not easy to explain that the
parity of the electron and the positron—its antiparticle—must be opposite, so
that the spin-zero ground state of positronium must be odd. We will just assume
that it is odd, and since we will get agreement with experiment, we can take that
as sufficient proof.

Let’s see then what happens if we make an inversion of the process in Fig.
18-6. When we do that, the two photons reverse directions and polarizations.
The inverted picture looks just like Fig. 18-8. Assuming that the parity of the
positronium is odd, the amplitudes for the two processes in Figs. 18-6 and 18-8
must have the opposite sign. Let’s let | R;R,) stand for the final state of Fig.
18-6 in which both photons are RHC, and let | L;L,) stand for the final state of
Fig. 18-8, in which both photons are LHC. The true final state—let’s call it | F)—
must be

| F) = | RiRy) — | L1Ly). (18.19)

Then an inversion changes the R’s into L’s and gives the state
P|F) = |LiLs) — | RiRy) = — | F), (18.20)

which is the negative of (18.19). So the final state | F) has negative parity, which
is the same as the initial spin-zero state of the positronium. This is the only final
state that conserves both angular momentum and parity. There is some amplitude
that the disintegration into this state will occur, which we don’t need to worry
about now, however, since we are only interested in questions about the polariza-
tion.

What does the final state of (18.19) mean physically? One thing it means is
the following: If we observe the two photons in two detectors which can be set
to count separately the RHC or LHC photons, we will always see two RHC
photons together, or two LHC photons together. That is, if you stand on one side
of the positronium and someone else stands on the opposite side, you can measure
the polarization and tell the other guy what polarization he will get. You have a
50-50 chance of catching a RHC photon or a LHC photon; whichever one you get,
you can predict that he will get the same.

Since there is a 50-50 chance for RHC or LHC polarization, it sounds as
though it might be like linear polarization. Let’s ask what happens if we observe
the photon in counters that accept only linearly polarized light. For 7Y-rays it is
not as easy to measure the polarization as it is for light; there is no polarizer which
works well for such short wavelengths. But let’s imagine that there is, to make the
discussion easier. Suppose that you have a counter that only accepts light with
x-polarization, and that there is a guy on the other side that also looks for linear
polarized light with, say, y-polarization. What is the chance you will pick up the
two photons from an annihilation? What we need to ask is the amplitude that
| F) will be in the state | x;y,). In other words, we want the amplitude

<‘x1y2 I F>»
which is, of course, just

(x1y2 | R1R2) — (x1yg | L1Ls). (18.21)

Now although we are working with two-particle amplitudes for the two
photons, we can handle them just as we did the single particle amplitudes, since
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each particle acts independently of the other. That means that the amplitude
(x1y2 | R1R3) is just the product of the two independent amplitudes (x, | R,)
and (ys | Rg). Using Table 17-3, these two amplitudes are 1/4/2 and i//2, so

(x1y2 | R1Ry)

i
+3-
Similarly, we find that

(xwa|Lily) = — %

Subtracting these two amplitudes according to (18.21), we get that
(x| F) = + i (18.22)

So there is a unit probabilityt that if you get a photon in your x-polarized detector,
the other guy will get a photon in his y-polarized detector.

Now suppose that the other guy sets his counter for x-polarization the same
as yours. He would never get a count when you got one. If you work it through,
you will find that

(x1x5 | F) = 0. (18.23)

It will, naturally, also work out that if you set your counter for y-polarization he
will get coincident counts only if he is set for x-polarization.

Now this all leads to an interesting situation. Suppose you were to set up
something like a piece of calcite which separated the photons into x-polarized
and p-polarized beams, and put a counter in each beam. Let’s call one the x-counter
and the other the y-counter. If the guy on the other side does the same thing,
you can always tell him which beam his photon is going to go into. Whenever
you and he get simultaneous counts, you can see which of your detectors caught
the photon and then tell him which of his counters had a photon. Let’s say that
in a certain disintegration you find that a photon went into your x-counter; you
can tell him that he must have had a count in his y-counter.

Now many people who learn quantum mechanics in the usual (old-fashioned)
way find this disturbing. They would like to think that once the photons are emitted
it goes along as a wave with a definite character. They would think that since
“any given photon” has some “amplitude” to be x-polarized or to be y-polarized,
there should be some chance of picking it up in either the x- or y-counter and that
this chance shouldn’t depend on what some other person finds out about a com-
pletely different photon. They argue that “someone else making a measurement
shouldn’t be able to change the probability that I will find something.” Our
quantum mechanics says, however, that by making a measurement on photon
number one, you can predict precisely what the polarization of photon number
two is going to be when it is detected. This point was never accepted by Einstein,
and he worried about it a great deal—it became known as the “Einstein-Podalsky-
Rosen paradox.” But when the situation 1s described as we have done it here,
there doesn’t seem to be any paradox at all; 1t comes out quite naturally that what
is measured in one place is correlated with what is measured somewhere else. The
argument that the result is paradoxical runs something like this:

(1) If you have a counter which tells you whether your photon is RHC or LHC,
you can predict exactly what kind of a photon (RHC or LHC) he will find.

(2) The photons he receives must, therefore, each be purely RHC or purely LHC,
some of one kind and some of the other.

(3) Surely you cannot alter the physical nature of his photons by changing the
kind of observation you make on your photons. No matter what measure-
ments you make on yours, his must still be either RHC or LHC.

T We have not normalized our amplitudes, or multiphed them by the amplitude for
the disintegration into any particular final state, but we can see that this result is correct
because we get zero probability when we look at the other alternative—see Eq. (18.23).
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(4) Now suppose he changes his apparatus to split his photons into two linearly
polarized beams with a piece of calcite so that all of his photons go either
into an x-polarized beam or into a y-polarized beam. There 1s absolutely no
way, according to quantum mechanics, to tell into which beam any par-
ticular RHC photon will go. There is a 509, probability it will go into the
x-beam and a 509, probability it will go into the y-beam. And the same
goes for a LHC photon.

(5) Since each photon is RHC or LHC—according to (2) and (3)—each one
must have a 50-50 chance of going into the x-beam or the y-beam and there
is no way to predict which way it will go.

(6) Yet the theory predicts that if you see your photon go through an x-polarizer
you can predict with certainty that his photon will go into his y-polarized
beam. This is in contradiction to (5) so there is a paradox.

Nature apparently doesn’t see the “paradox,” however, because experiment
shows that the prediction in (6) is, in fact, true. We have already discussed the key
to this “paradox™ in our very first lecture on quantum mechanical behavior in
Chapter 35, Vol. I. In the argument above, steps (1), (2), (4), and (6) are all
correct, but (3), and its consequence (5), are wrong; they are not a true description
of nature. Argument (3) says that by your measurement (seeinga RHC or a LHC
photon) you can determine which of two alternative events occurs for him (seeing
a RHC or a LHC photon), and that even if you do nor make your measurement
you can still say that his event will occur either by one alternative or the other.
But it was precisely the point of Chapter 35, Vol. I, to point out right at the begin-
ning that this is not so in Nature. Her way requires a description 1n terms of inter-
fering amplitudes, one amplitude for each alternative. A measurement of which
alternative actually occurs destroys the interference, but if a measurement is
not made you cannot still say that “one alternative or the other is still occurring.”

If you could determine for each one of your photons whether it was RHC and
LHC, and also whether it was x-polarized (all for the same photon) there would
indeed be a paradox. But you cannot do that—it is an example of the uncertainty
principle.

Do you still think there is a “‘paradox”? Make sure that it is, in fact, a paradox
about the behavior of Nature, by setting up an imaginary experiment for which
the theory of quantum mechanics would predict inconsistent results via two
different arguments. Otherwise the “paradox” is only a conflict between reality
and your feeling of what reality “ought to be.”

Do you think that it is notr a “paradox,” but that it is still very peculiar?
On that we can all agree. It is what makes physics fascinating.

18-4 Rotation matrix for any spin

By now you can see, we hope, how important the idea of the angular mo-
mentum is in understanding atomic processes. So far, we have considered only
systems with spins—or “‘total angular momentum”—of zero, one-half, or one.
There are, of course, atomic systems with higher angular momenta. For analyzing
such systems we would need to have tables of rotation amplitudes like those in
Section 17-6. That is, we would need the matrix of amplitudes for spin 3, 2,
3, 3, etc. Although we will not work out these tables in detail, we would like
to show you how it 1s done, so that you can do it if you ever need to.

As we have seen earlier, any system which has the spin or “‘total angular mo-
mentum” j can exist in any one of (2j + 1) states for which the z-component of
angular momentum can have any one of the discrete values in the sequence j,
j—1Lj—=2,...,—=(j — 1), —j (all in units of #). Calling the z-component of
angular momentum of any particular state m#h, we can define a particular
angular momentum state by giving the numerical values of the two “angular
momentum quantum numbers” ;y and m. We can indicate such a state by the state
vector |j, m). In the case of a spin one-half particle, the two states are then
| %, %) and | %, —%); or for a spin-one system, the states would be written in this
notation as | 1, +1), | 1,0), | 1, —1). A spin-zero particle has, of course, only the

one state | 0, 0). 18-9



Now we want to know what happens when we project the general state | j, m)
into a representation with respect to a rotated set of axes. First. we know that j
is a number which characterizes the system, so it doesn’t change. If we rotate the
axes, all we do is get a mixture of the various m-values for the same j. In general,
there will be some amplitude that in the rotated frame the system will be in the
state | j, m'), where m’ gives the new z-component of angular momentum. So what
we want are all the matrix elements (j, m’ | R| j, m) for various rotations. We
already know what happens if we rotate by an angle ¢ about the z-axis. The new
state is just the old one multiplied by e*"*—it still has the same m-value. We can
write this by

RA($) |j,m) = e™ | j, m). (18.24)
Or, if you prefer,
G’ | RA@) | jym) = 8™ (18.25)

(where 8,, ., is 1 if m’ = m, or zero otherwise).

For a rotation about any other axis there will be a mixing of the various
m-states. We could, of course, try to work out the matrix elements for an arbitrary
rotation described by the Euler angles 3, «, and v. But it 1s easier to remember
that the most general such rotation can be made up of the three rotations R,(7),
R,(a), R.(8); so if we know the matrix elements for a rotation about the y-axis,
we will have all we need.

How can we find the rotation matrix for a rotation by the angle 6 about the
y-axis for a particle of spin j? We can'’t tell you how to do it in a basic way (with
what we have had). We did it for spin one-half by a complicated symmetry argu-
ment. We then did it for spin one by taking the special case of a spin-one system
which was made up of two spin one-half particles. If you will go along with us and
accept the fact that in the general case the answers depend only on the spin j, and
are independent of how the inner guts of the object of spin j are put together, we
can extend the spin-one argument to an arbitrary spin. We can, for example,
cook up an artificial system of spin § out of three spin one-half objects. We can
even avoid complications by imagining that they are all distinct particles—like a
proton, an electron, and a muon. By transforming each spin one-half object, we
can see what happens to the whole system—remembering that the three amplitudes
are multiplied for the combined state. Let’s see how it goes in this case.

Suppose we take the three spin one-half objects all with spins “up’; we can
indicate this state by | + + +). If we look at this system in a frame rotated about
the z-axis by the angle ¢, each plus stays a plus, but gets multiplied by /2.
We have three such factors, so

Re)| + + +) =2 | + + +). (18.26)

Evidently the state | + 4+ +) is just what we mean by the m = -+ state, or
the state | £, +3).

If we now rotate this system about the y-axis, each of the spin one-half objects
will have some amplitude to be plus or to be minus, so the system will now be a
mixture of the eight possible combinations |+ + +), |+ + =), |+ — +),
l—++)]+—=)|—+ ~)|—— ) or| — — —). Itis clear, however,
that these can be broken up into four sets, each set corresponding to a particular
value of m. First, we have | + + +), for which m = £. Then there are the
three states | + + —), | + — +), and | — + +)—each with two plusses and
one minus. Since each spin one-half object has the same chance of coming out
minus under the rotation, the amounts of each of these three combinations should
be equal. So let’s take the combination

1
V3
with the factor 1/+/3 put in to normalize the state. If we rotate this state about

the z-axis, we get a factor *'2 for each plus, and e~**2 for each minus. Each
term in (18.27) is multiplied by e'*2, so there is the common factor e**'2. This
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one “—" pieces. For instance,
[+ + =) =d%c|+" +'+') + a®d|+' +' ~') + abe |+~ +)
+ bac| =" +'+') + abd |+’ —' —') + bad | —~" +' —")
+ b%c| =" —"+') + b¥| - —' —"). (18.33)

Adding two similar expressions for | + — +) and | — + +) and dividing by
/3, we find B
[3,4+1,8) = v/3a%|3,+3T)
+(a%d + 2abc) | 3,+1,T)
+(2bad + b%) | 3,—1,T)
Continuing the process we find all the elements (jT | iS) of the transformation ma-

trix as given in Table 18-2. The first column comes from Eq. (18.32); the second
from (18.34). The last two columns were worked out in the same way.

Table 18-2
Rotation matrix for a spin % particle

(The coefficients a, b, c, and 4 are given in Table 12-4.)

(iT| iS) 2,42,8) 3,+3.5) 3.-%.5) 13.,~3.5)
G437 ad V3 a2e V3 ac? 0 3
&,+3.7| /3 a?% a’d + 2abc ¢2b + 2dac V3c2d
3,-17| V'3 ab? 2bad + b%c 2cdb + d?a V3 cd?
3,-3,7| b3 V3 b2d /'3 bd? a3

Now suppose the 7T-frame were rotated with respect to .S by the angle 6 about
their y-axes. Then a, b, ¢, and d have the values [see (12.54)] a = d = cos 6/2,
and ¢ = —b = sin §/2. Using these values in Table 18-2 we get the forms
which correspond to the second part of Table 17-2, but now for a spin  system.

The arguments we have just gone through are readily generalized to a system
of any spin j. The states |j, m) can be put together from 2; particles, each of
spin one-half. (There are j + m of them 1n the | +) state and j — m in the | —)
state.) Sums are taken over all the possible ways this can be done, and the state
1s normalized by multiplying by a suitable constant. Those of you who are mathe-
matically inclined may be able to show that the following result comes outt:

Gym' | RO | J,my = [(G + m)I(G — m)!(j + m")I(j — m')]'2

X3 (= 1)*(cos 8/2)> ™ ~™—K(sin g/2)" ™ +2*
~ (m—m + K+ m — k) — m— k)k!

) (18.35)

where k is to go over all values which give terms > 0 in all the factorials.

This is quite a messy formula, but with 1t you can check Table 17-2 for j = 1
and prepare tables of your own for larger j. Several special matrix elements are of
extra importance and have been given special names. For example the matrix
elements for m = m’ = 0 and integral j are known as the Legendre polynomials
and are called P, (cos 6):

G, 01 R(8)] j,0) = P,(cos 6). (18.36)

T If you want details, they.are given 1n an appendix to this chapter.
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The first few of these polynomials are:

Py (cos6) = 1, (18.37)
P, (cos 6) = cos b, (18.38)
P, (cos 8) = 3(3cos28 — 1), (18.39)
P35 (cos 8) = 3(5cos3 8 — 3 cos 6). (18.40)

18-5 Measuring a nuclear spin

We would like to show you one example of the application of the coefficients
we have just described. It has to do with a recent, interesting experiment which
you will now be able to understand. Some physicists wanted to find out the spin
of a certain excited state of the Ne2° nucleus. To do this, they bombarded a
carbon target with a beam of accelerated carbon ions, and produced the desired
excited state of Ne?%—called Ne2%*—in the reaction

C12 + C12—>N620* + a1,

where a; is the a-particle, or He*. Several of the excited states of Ne2? produced
this way are unstable and disintegrate in the reaction

Ne20* — 016 + q,.

So experimentally there are two a-particles which come out of the reaction. We
call them a; and «»; since they come off with different energies, they can be
distinguished from each other. Also, by picking a particular energy for a; we
can pick out any particular excited state of the Ne2°,

The experiment was set up as shown in Fig. 18-9. A beam of 16-Mev carbon
ions was directed onto a thin foil of carbon. The first a-particle was counted in a
silicon diffused junction detector marked «;—set to accept a-particles of the
proper energy moving in the forward direction (with respect to the incident C'?
beam). The second a-particle was picked up in the counter a, at the angle 6
with respect to a;. The counting rate of coincidence signals from o; and oy were
measured as a function of the angle 6.

The idea of the experiment is the following. First, you need to know that the
spins of C*2, O'®, and the a-particle are all zero. If we call the direction of motion
of the initial C'2 the + z-direction, then we know that the Ne2%* must have zero
angular momentum about the z-axis. None of the other particles has any spin;
the C!? arrives along the z-axis and the «, leaves along the z-axis so they can’t
have any angular momentum about it. So whatever the spin j of the Ne20* is,
we know that it is in the state | j,0). Now what will happen when the Ne2%
disintegrates into an O'® and the second a-particle? Well, the a-particle is picked
up in the counter a; and to conserve momentum the O!% must go off in the op-
posite direction.t About the new axis through «,, there can be no component of
angular momentum. The final state has zero angular momentum about the new
axis, so the Ne2%* can disintegrate this way only if it has some amplitude to have
m' equal to zero, where m’ is the quantum number of the component of angular
momentum about the new axis. In fact, the probability of observing a at the angle
6 is just the square of the amplitude (or matrix element)

(U, 01 R(6) |/, 0). (18.41)

To find the spin of the Ne2%* state in question, the intensity of the second
a-particle was plotted as a function of angle and compared with the theoretical

+ We can neglect the recoil given to the Ne20* in the first collision. Or better still,
we can calculate what it is and make a correction for it.
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curves for various values of j. As we said in the last section, the amplitudes
{J, 0| Ry(8) | J» 0) are just the functions P, (cos §). So the possible angular distribu-
tions are curves of [P, (cos 8)]°. The experimental results are shown in Fig. 18-10
for two of the excited states. You can see that the angular distribution for the
5.80-Mev state fits very well the curve for [P; (cos 6)]2, and so it must be a spin-one
state. The data for the 5.63-Mev state, on the other hand, are quite different;
they fit the curve [P (cos 6)]2. The state has a spin of 3.

From this experiment we have been able to find out the angular momentum of
two of the excited states of Ne2%*, This information can then be used for trying
to understand what the configuration of protons and neutrons is inside this
nucleus—one more piece of information about the mysterious nuclear forces.

18-6 Composition of angular momentum

When we studied the hyperfine structure of the hydrogen atom in Chapter 12
we had to work out the internal states of a system composed of two particles—
the electron and the proton—each with a spin of one-half. We found that the four
possible spin states of such a system could be put together into two groups—a
group with one energy that looked to the external world like a spin-one particle,
and one remaining state that behaved like a particle of zero spin. That is, putting
together two spin one-half particles we can form a system whose “total spin”
is one, or zero. In this section we want to discuss in more general terms the spin
states of a system which is made up of two particles of arbitrary spin. It is another
important problem about angular momentum in quantum mechanical systems.

Let’s first rewrite the results of Chapter 12 for the hydrogen atom in a form
that will be easier to extend to the more general case. We began with two particles
which we will now call particle a (the electron) and particle b (the proton). Particle
a had the spin j, (=%), and its z-component of angular momentum m, could
have one of several values (actually 2, namely m, = +3% orm, = —3}). Similarly,
the spin state of particle b is described by its spin j and its z-component of angular
momentum my. Various combinations of the spin states of the two particles
could be formed. For instance, we could have particle a with m, = 4 and particle
b with m, = —4%, to make a state | a, +%; b, —3%). In general, the combined
states formed a system whose ‘“‘system spin,” or “total spin,” or “total angular
momentum” J could be 1, or 0. And the system could have a z-component of
angular momentum M, which was +1, 0, or —1 whenJ = 1, or 0 when J = 0.
In this new language we can rewrite the formulas in (12.41) and (12.42) as shown
in Table 18-3.

In the table the left-hand column describes the compound state in terms of
its total angular momentum J and the z-component M. The right-hand column
shows how these states are made up in terms of the m-values of the two particles
a and b.

We want now to generalize this result to states made up of two objects a and
b of arbitrary spins j, and j,. We start by considering an example for which j, = %

Table 18-3

Composition of angular momenta for two
spin % particles (j, = 4, /5 = %)

|J=1,M=41) = |a,+};5,+3)
J=1,M= 0)= é {lat3sb,—3) + | a,—$; b,4+3)
|J =1, M= —1) = |a,—%;5,—%)
7=0M= 0)= é {a+d;6,—3) — | a—4; b,+3)
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and j, = 1, namely, the deuterium atom in which particle a is an electron (e) and
particle b is the nucleus—a deuteron (d). We have then that j, = j. = 3. The
deuteron is formed of one proton and one neutron in a state whose total spin is
one, so j, = jq = l. We want to discuss the hyperfine states of deuterium—just
the way we did for hydrogen. Since the deuteron has three possible states m, =
mq = +1, 0, —1, and the electron has two, m, = m, = +3%, —43, there are
six possible states as follows (using the notation | e, m; d, mq)):

le,+3%;d,+1),
|e,4%;d,0); | e,—%;d,+1),
le,+%;d,—1); le,~3; d,0),
le,—1:d,—1).

(18.42)

You will notice that we have grouped the states according to the values of the sum
of m, and myq—arranged in descending order.

Now we ask: What happens to these states if we project into a different
coordinate system? If the new system is just rotated about the z-axis by the angle
¢, then the state | e, m,; d, mq) gets multiplied by

eimetpimdd — pilmetme)e (18.43)

(The state may be thought of as the product | e, m,) | d, m4), and each state vector
contributes independently its own exponential factor.) The factor (18.43) is of the
form e"™?, so the state | e, m.; d, mq) has a z-component of angular momentum

equal to
M = m, + ma. (18.44)

The z-component of the total angular momentum is the sum of the z-components of
angular momentum of the parts.

In the list of (18.42), therefore, the state in the top line has M = +3, the
two in the second line have M = +3, the next two have M = —1, and the
last state has M = —3. We see immediately one possibility for the spin J of the
combined state (the total angular momentum) must be £, and this will require
four states with M = +3, +4, —4, and —35.

There is only one candidate for M = £, so we know already that

U= 8 M= +8) = |etd:d, +1). (18.45)

But what is the state | J = 2, M = 1)? We have two candidates in the second line
of (18.42), and, in fact, any linear combination of them would also have M = 3.
So, in general, we must expect to find that

|J=3M=+3) = afe,+3;d0) + Ble,—~3;d,+1), (18.46)

where « and 3 are two numbers. They are called the Clebsch-Gordon coefficients.
Our next problem is to find out what they are.

We can find out easily if we just remember that the deuteron is made up of a
neutron and a proton, and write the deuteron states out more explicitly using the
rules of Table 18-3. If we do that, the states listed in (18.42) then look as shown in
Table 18-4.

We want to form the four states of J = £, using the states in the table.
But we already know the answer, because in Table 18-1 we have states of spin
% formed from three spin one-half particles. The first state in Table 18-1 has
|J = $, M = +%)anditis| + 4+ +), which—in our present notation—is the
same as | e,+%; n,+4, p,4+3), or the first state in Table 18-4. But this state is
also the same as the first in the list of (18.42), confirming our statement in (18.45).
The second line of Table 18-1 says—changing to our present notation—that

1
V3
+ e, +4:0,—%;p,4+3) + | e,—4; 0,43 p+3)) (18.47)
18-15

|J=%M= 4} = {le,+%;n+4%;p—3%



Table 184

Angular momentum states for a deuterium atom

m=3

le,+3;d,4+1) = | e,+4; n,+3; p,+%)

m=3}

| e,4+3%;d,0) = J\/-E{I e, +4;n,+%;p,—%) + e, 44 n,—%;p,+3)}

le,—~%;d,+1) = |e,—%;n,+%; p,+%)

m=—}%
le,+4;d,—1) = | e,+3;n,—3;p,—%)

e,—%;d,0) = \/LE {le,(~3;n,+%;p,—3) + | e,—3:n,—3; p,+3)}

m=—3

le,—%;d,—1) = |e,—4;n,—3%;p,—3%)

The right side can evidently be put together from the two entries in the second line
of Table 18—4 by taking 1/2/3 of the first term with /1/3 of the second. That is,
Eq. (18-47) is equivalent to

|J=%M=13) =v2/3|e+$d0) + VI/3|e—%d1).  (1848)
We have found our two Clebsch-Gordon coefficients @ and 8 in Eq. (18.46):

a = V2/3, B =+V1/3. (18.49)

Following the same procedure we can find that

|J=3M= -3 =V1/3|e+}d—1)+V2/3|e,~%;d,0).  (18.50)
And, also, of course,
|J=%M= -3 =|e—5d,—1) (18.51)

These are the rules for the composition of spin 1 and spin % to make a total J = 3.
We summarize (18.45), (18.48), and (18.50) in Table 18-5.

We have, however, only four states here while the system we are considering
has six possible states. Of the two states in the second line of (18.42) we have used
only one linear combination to form |J = 3, M = +4). There is another linear
combination orthogonal to the one we have taken which also has M = +3,
namely

V1/3|e43;d,0) — V2/3 | e,—3%;d,+1). (18.52)
Table 18-5

The J = # states of the deuterium atom

|J =% M= +3) = |e+}d+1)

|J =3 M= +3) = \V2/3|e,4+%:d,0) + V1/3 ] e,—%; d,1)
I17=% M=~} =VI/3|e+4d,—1) + V2/3|e,—%;d,0)
|7 =3,M=—3) =|e—%;d,~1)
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Similarly, the two states in the third line of (18.42) can be combined to give two

orthogonal states, each with M = —1. The one orthogonal to (18.52) is
V2/3|e43;d,—1) — V1/3 | e,—3%;d,0). (18.53)
These are the two remaining states. They have M = m, + mq = =%; and

must be the two states corresponding to J = }. So we have

IJ = %,M = %) =V 1/3|C,+12~,d,0> - \/2—75[8,—%; d’+1>3
(18.54)
[J =3 M= -3 =+2/3]e+3d,—1) — V1/3]e,—3%;d,0).

We can verify that these two states do indeed behave like the states of a spin
one-half object by writing out the deuterrum parts in terms of the neutron and
proton states—using Table 18-3. The first state in (18.53) is

\/1/_6{l e7+%; na+%; p;‘%) + | C,+?i;; n:—'%; p:+%>}
—V2/3|e,—%;n,+%;p,4+3), (18.55)

which can also be written

V133[V1/2 {{e43;n,4%; p,—3) — |e,—%; n,+3; p,+3)}

+ V172 {|e,+3;0,—%; p+3) — le.—3:n,+3; p, 43}
(18.56)

Now look at the terms in the first curly brackets, and think of the e and p taken
together. Together they form a spin-zero state (see the bottom line of Table 18-3),
and contribute no angular momentum. Only the neutron is left, so the whole of
the first curly bracket of (18.56) behaves under rotations like a neutron, namely
as a state with J = 4, M = +3. Following the same reasoning, we see that
in the second curly bracket of (18.56) the electron and neutron team up to produce
zero angular momentum, and only the proton contribution—with m, = $—is
left. The terms behave like an object with J = §, M = +3%. So the whole ex-
pression of (18.56) transforms like |J = +3%, M = +3) as it should. The

= —1 state which corresponds to (18.57) can be written down (by changing
the proper +4’s to —4’s) to get

V13[V1/2 {|e 43 0,~4p,—%) — | e—%;0,—5; p,+5)}
+ V 1/2 {| e,-i—%;n,—%—;p,—%) - |e,_%§n,+%§P’_%>}]'
(18.57)

You can easily check that this is equal to the second line of (18.54), as it should be
if the two terms of that pair are to be the two states of a spin one-half system. So our
results are confirmed. A deuteron and an electron can exist in six spin states, four
of which act like the states of a spin £ object (Table 18-5) and two of which act
like an object of spin one-half (18.54).

The results of Table 18-5 and of Eq. (18.54) were obtained by making use of
the fact that the deuteron is made up of a neutron and a proton. The truth of the
equations does not depend on that special circumstance. For any spin-one object
put together with any spin one-half object the composition laws (and the coeffi-
cients) are the same. The set of equations in Table 18-5 means that if the co-
ordinates are rotated about, say, the y-axis—so that the states of the spin one-half
particle and of the spin-one particle change according to Table 18-1,and Table
18-2—the linear combinations on the right-hand side will change in the proper
way for a spin £ object. Under the same rotation the states of (18.54) will
change as the states of a spin one-half object. The results depend only on the
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Table 18-6

Composition of a spin one-half particle (j, = %)
and a spin-one particle Gy = D).

|J=8M=3% =|a+}b+1)
|J=8M=1% =+V2/3|a+%b0)+V1/3]|a—3%;b+1)
|7 =8 M=-%) = V1/3|a+}b6,—1) + V2/3| a,—4; b0)
|J =8 M=-8) = |a,—%;5,-1)
|J =4 M =+%) = V1/3|a,4%;60) — V2/3|a,—%; b,+1)
|J =4 M =-1%) = V2/3|a+}:b,—1) — V1/3| a,—%; b,0)

rotation properties (that is, the spin states) of the two original particles but not
in any way on the origins of their angular momenta. We have only made use of
this fact to work out the formulas by choosing a special case in which one of the
component parts is itself made up of two spin one-half particles in a symmetric
state. We have put all our results together in Table 18-6, changing the notation
“e” and “d” to “a”’ and “‘b” to emphasize the generality of the conclusions.

Suppose we have the general problem of finding the states which can be
formed when two objects of arbitrary spins are combined. Say one has j, (so its
z-component m, runs over the 2j, + 1 values from —j, to +j,;) and the other has
Jb (with z-component m; running over the values from —j, to +;5). The combined
states are | a, m,; b, m,), and there are (2j, + 1)(2j, + 1) different ones. Now
what states of total spin J can be found?

The total z-component of angular momentum M is equal to m, + m;, and
the states can all be listed according to M [as in (18.42)]. The largest M is unique;
it corresponds to m, = j, and m, = j;, and is, therefore, just j, + j». That
means that the largest total spin J is also equal to the sum j, + ji:

J = (M)max = ja + Jb

For the first M value smaller than (M),.x, there are two states (either m, or m,
is one unit less than its maximum). They must contribute one state to the set that
goes with J = j, + Ji, and the one left over will belong to a new set with J =
Ja + j» — 1. The next M-value—the third from the top of the list—can be formed
in three ways. (Fromm, = j, — 2, mp = jp; fromm, = j, — 1, my = j, — 1;
and from m, = j,, my = j, — 2.) Two of these belong to groups already started
above; the third tells us that states of J = j, + j, — 2 must also be included.
This argument continues until we reach a stage where in our list we can no longer
go one more step down in one of the m’s to make new states.

Let j;, be the smaller of j, and j, (if they are equal take either one); then only
2j, values of J are required—going in integer steps from j, + j, down to j, — js.
That is, when two objects of spin j, and j, are combined, the system can have a
total angular momentum J equal to any one of the values

ja +]b
Jot+ s — 1

J=< Jatjo—2 (18.58)
Ija _.]bl

(By writing | j, — j» | instead of j, — j, we can avoid the extra admonition that
ja Z ]b)

For each of these J values there are the 2J + 1 states of different M-values—
with M going from +J to —J. Each of these is formed from linear combinations
of the original states | a, m,; b, my) with appropriate factors—the Clebsch-Gordon
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coefficients for each particular term. We can consider that these coefficients give
the “amount” of the state | j,, ma; ji, ms) Which appears in the state | J, M). So
each of the Clebsch-Gordon coefficients has, if you wish, six indices identifying
its position in the formulas like those of Tables 18-3 and 18-6. That is, calling
these coefficients C(J, M; j,, mg; j», mp), we could express the equality of the
second line of Table 18-6 by writing

CEA+4 3 +51,0) = V273,
CE+44 -3 L+ = VI1/3.

We will not calculate here the coefficients for any other special cases.} You
can, however, find tables in many books. You might wish to try another special
case for yourself. The next one to do would be the composition of two spin-one
particles. We give just the final result in Table 18-7.

These laws of the composition of angular momenta are very important in

particle physics—where they have innumerable applications. Unfortunately, we
have no time to look at more examples here.

Table 18-7

Composition of two spin-one particles (j, = 1,j, = 1)

|J =2, M = +2) = | a,+1; b,+1)

1 1

J=2M=+1) = — | a,4+1;50) + — | a,0; b,41)

| V2 V2

lJ=2,M= 0) = Ja+l6-1) + L a—1;b4+1) + —=| a,0; 5,0)

3 ’\/g bl 3 k] Vg t] 5 t V-é " b

1 1

|J=2,M = —1) = ——|a0;b,—1) + —— | a,—1; b,0)
\/§| \2

|J=2,M==2) = |a—1;b6—1)

1 1
J=1,M=+41) = ——|a+1;50) — — | a,0; b,+1)
| V2 V2
1 1
[J=1,M= 0)=—/a+1;b—1) — — |a,—1; b,41)
V2 V2
[J= 1, M= —1) = 1 1a0;6,—1) — 2| a,—1; 5,0)
V2 V2

|J =0, M

1
0) = — {la,2+1;5,—1) + | a,—1; b,41) — | 4,0; 5,0
NG I ) »

Added Note 1: Derivation of the rotation matrix}

For those who would like to see the details, we work out here the general
rotation matrix for a system with spin (total angular momentum) j. It is really not
very important to work out the general case; once you have the idea, you can find
the general results in tables in many books. On the other hand, after coming
this far you might like to see that you can indeed understand even the very com-
plicated formulas of quantum mechanics, such as Eq. (18.35), that come into the
description of angular momentum.

T A large part of the work is done now that we have the general rotation matrix Eq.
(18.35).

1 The matenal of this appendix was originally included in the body of the lecture.
We now feel that 1t 1s unnecessary to include such a detailed treatment of the general case.
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We extend the arguments of Section 184 to a system with spin j, which we
consider to be made up of 2j spin one-half objects. The state with m = j would
be |+ + + * -+ +) (with j plus signs). For m = j — 1, there will be 2/ terms
like |+ +4++4+—)|++ -+ —+), and so on. Let’s consider the
general case in which there are r plusses and s minuses—with » + s = 2j. Under
a rotation about the z-axis each of the r plusses will contribute e***/2, The result
is a phase change of i(r/2 — s/2)¢. You see that
r—s

m = P

(18.59)

Just as for J = £, each state of definite m must be the linear combination with
plus signs of all the states with the same r and s—that is, states corresponding to
every possible arrangement which has r plusses and s minuses. We assume that
you can figure out that there are (r + s)!/r!s! such arrangements. To normalize
each state, we should divide the sum by the square root of this number. We can
write

1 ]1—1/2
[%] (+++ - Ftto—— )
+ (all rearrangements of order)} = | j, m) (18.60)
with
="§S, m=’;S. (18.61)

It will help our work if we now go to still another notation. Once we have
defined the states by Eq. (18.60), the two numbers » and s define a state just as
well as j and m. It will help us keep track of things if we write

| jym) = 1%), (18.62)
where, using the equalities of (18.67)

r=j+m, s=j—m
Next, we would like to write Eq. (18.60) with a new special notation as

. r r+ ) 2 .
my = 19 = [CED T e (1863
Note that we have changed the exponent of the factor in front to plus 4. We do
that because there are just N = (r + s)!/rls! terms inside the curly brackets.

Comparing (18.63) with (18.60) it is clear that
{I +)r l_>s} perm

is just a shorthand way of writing

{|+ + -+ — —) + all rearrangements}
N k]

where N is the number of different terms in the bracket. The reason that this
notation is convenient is that each time we make a rotation, all of the plus signs
contribute the same factor, so we get this factor to the rth power. Similarly, all
together the s minus terms contribute a factor to the sth power no matter what the
sequence of the terms is.

Now suppose we rotate our system by the angle 8 about the y-axis. What we
want is R,(6) | ;). When R,(6) operates on each | +) it gives

RO | +) = [+)C+ [ =)S, (18.64)

where C = cos /2 and S = sin 6/2. When R,(8) operates on each | — ) it gives

R(O)]| =) =|—)C—[+)S.
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So what we want is

B q1/2
R@19 = |2 RO+ T =) oo
[ J1/2
=155 RO RO [ =) o
[ /2
O e+ 128 =)C = |40 perm: (1865)

Now each binomial has to be expanded out to its appropriate power and the two
expressions multiplied together. There will be terms with | 4) to all powers from
zero to (r + s). Let’s look at all of the terms which have | +) to the »* power.
They will appear always multiplied with | — ) to the s’ power, where s’ = 2j — r’.
Suppose we collect all such terms. For each permutation they will have some
numerical coefficient involving the factors of the binomial expansion as well as
the factors C and S. Suppose we call that factor 4,.. Then Eq. (18.65) will look like

7458 i ,
RO [0 = 2 {4 )" | =)} perm. (18.66)
r'=0

Now let’s say that we divide 4, by the factor [(*' + s")!/r'!s"!']*% and call the
quotient B,.. Equation (18.66) is then equivalent to

r & I" + S, 1/2 r’ 8’
R(0)|2) = D B [W] 14471 =) hoerm: (18.67)
— st

(We could just say that this equation defines B, by the requirement that (18.67)
gives the same expression that appears in (18.65).)

With this definition of B, the remaining factors on the right-hand side of
Eq. (18.67) are just the states |7,). So we have that

RO = i B | %), (18.68)

r’'=0

with s’ always equal to r 4+ s — #’. This means, of course, that the coefficients
B, are just the matrix elements we want, namely

(v | R(8)|3) = By (18.69)

Now we just have to push through the algebra to find the various B,.. Com-
paring (18.39) with (18.37)—and remembering that ' + s’ = r + s—we see
that B, is just the coefficient of a”'5* in the following expression:

Mg\ 12
(W) (aC + bS)'(bC — aS)’. (18.70)
It is now only a dirty job to make the expansions by the binomial theorem, and

collect the terms with the given power of a and 6. If you work it all out, you find
that the coefficient of a’'5* in (18.70) is

r'ls' 12 kor—r' 4+ 2k ~s4r'—2k r! s!
[r!s!] Z; (=1)'s ¢ =7+ — k) = kK

(18.71)

The sum is to be taken over all integers k which give terms of zero or greater in the
factorials. This expression is then the matrix element we wanted.
Finally, we can return to our original notation in terms of j, m, and m’ using

r=j+4+m, r=j+m, s =j— m, s =j—m.

Making these substitutions, we get Eq. (18.34) in Section 18-4.
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Added Note 2: Conservation of parity in photon emission

In Section 1 of this chapter we considered the emission of light by an atom
that goes from an excited state of spin 1 to a ground state of spin 0. If the excited
state has 1ts spin up (m = +1), it can emit a RHC photon along the +z-axis or
a LHC photon along the —z-axis. Let’s call these two states of the photon | R,,)
and | Lqn). Neither of these states has a definite parity. Letting P be the parity
operator, P | Ryp) = | Lan) and P | Lay) = | Rup).

What about our earlier proof that an atom in a state of definite energy must
have a definite parity, and our statement that parity is conserved in atomic proc-
esses? Shouldn’t the final state in this problem (the state after the emission of a
photon) have a defimite parity? It does if we consider the complete final state
which contains amplitudes for the emission photons into all sorts of angles. In
Section 1 we chose to consider only a part of the complete final state.

If we wish we can look only at final states that do have a definite parity. For
example, consider a final state | ) which has some amplitude « to be a RHC
photon going along +z and some amplitude 8 to be a LHC photon going along
~z. We can write

[¥F) = a| Rup) + B8 Lan). (18.72)

The parity operation on this state gives

Plyr) = a| L) + 8| Rup)- (18.73)
This state will be = | ¢p)if 8 = aorif 8 = —a. So a final state of even parity 1s
l ‘/’F_‘U = a {Rup> + lLdn>}’ (1874)

and a state of odd parity is
[¥r) = af{| Rup) — | Lan)}. (18.75)

Next, we wish to consider the decay of an excited state of odd parity to a
ground state of even parity. If parity is to be conserved, the final state of the
photon must have odd parity. It must be the state in (18.75). If the amplitude to
find | Ryp) is «, the amplitude to find | L4n) is —o.

Now notice what happens when we perform a rotation of 180° about the
y-axis. The initial excited state of the atom becomes an m = —1 state (with no
change in sign, according to Table 17-2). And the rotation of the final state gives

R,(180°) [¥r) = a{| Ran) — | Lwp)}. (18.76)

Comparing this equation with (18.75), you see that for the assumed parity of the
final state, the amplitude to get a LHC photon along +z from the m = —1
initial state is the negative of the amplitude to get a RHC photon from the m = +1
initial state. This agrees with the result we found in Section 1.
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The Hydrogen Atom and
The Periodie Table

19-1 Schrodinger’s equation for the hydrogen atom

The most dramatic success 1n the history of the quantum mechanics was the
understanding of the details of the spectra of some simple atoms and the under-
standing of the periodicities which are found in the table of chemical elements.
In this chapter we will at last bring our quantum mechanics to the point of this
important achievement, specifically to an understanding of the spectrum of the
hydrogen atom. We will at the same time arrive at a qualitative explanation of the
mysterious properties of the chemical elements. We will do this by studying 1n
detail the behavior of the electron in a hydrogen atom—for the first time making
a detailed calculation of a distribution-in-space according to the ideas we developed
in Chapter 16.

For a complete description of the hydrogen atom we should describe the mo-
tions of both the proton and the electron. It is possible to do this in quantum
mechanics in a way that is analogous to the classical idea of describing the motion
of each particle relative to the center of gravity, but we will not do so. We wiil
just discuss an approximation in which we consider the proton to be very heavy,
so we can think of it as fixed at the center of the atom.

We will make another approximation by forgetting that the electron has a
spin and should be described by relativistic laws of mechanics. Some small cor-
rections to our treatment will be required since we will be using the nonrelativistic
Schrodinger equation and will disregard magnetic effects. Small magnetic effects
occur because from the electron’s point-of-view the proton is a circulating charge
which produces a magnetic field. In this field the electron will have a different
energy with its spin up than with 1t down. The energy of the atom will be shifted
a little bit from what we will calculate. We will ignore this small energy shift.
Also we will imagine that the electron is just like a gyroscope moving around in
space always keeping the same direction of spin. Since we will be considering a
free atom in space the total angular momentum will be conserved. In our approxi-
mation we will assume that the angular momentum of the electron spin stays con-
stant, so all the rest of the angular momentum of the atom—what is usually called
“orbital” angular momentum—will also be conserved. To an excellent approxi-
mation the electron moves in the hydrogen atom like a particle without spin—the
angular momentum of the motion is a constant,

With these approximations the amplitude to find the electron at different
places in space can be represented by a function of position 1n space and time.
We let ¥(x, y, z, t) be the amplitude to find the electron somewhere at the time z.
According to the quantum mechanics the rate of change of this amplitude with

time is given by the Hamiltonian operator working on the same function. From
Chapter 16,

g O s
i E = SC'P, (191)
with
s‘c———hiv2+V( 19.2
= -5 ). (19.2)

Here, m is the electron mass, and V(r) is the potential energy of the electron in the
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Fig. 19-1. The spherical polar co-
ordinates r, 8, ¢ of the point P.

electrostatic field of the proton. Taking ¥ = 0 at large distances from the proton
we can writet

e
V = - T *
The wave function ¥ must then satisfy the equation
., 0 2 2
iho = — 5=V — = (19.3)

We want to look for definite energy states, so we try to find solutions which
have the form

¥, 1) = e “PEY(p), (194
The function ¥(r) must then be a solution of
2 2
— vy - ( e—) " 19.)

where E is some constant—the energy of the atom.

Since the potential energy term depends only on the radius, it turns out to
be much more convenient to solve this equation in polar coordinates rather than
rectangular coordinates. The Laplacian is defined in rectangular coordinates by

9* a2 a2
2=_ v v .
ax2+6y2+ 9z2

We want to use instead the coordinates r, 6, ¢ shown in Fig. 19-1. These
coordinates are related to x, y, z by

Xx = rsin 6 cos ¢; y = rsinésin ¢; z = rcosé.

It's a rather tedious mess to work through the algebra, but you can eventually
show that for any function f(r) = f(r, 6, ¢),

3 1 9
VY, 0,9) = ; ar—Z )+ 5 lsm 6 96 (sm 6 a{9> T SnZo 29«7{ ' (198)

So in terms of the polar coordinates, the equation which is to be satisfied by
¥(r, 0, ¢) is

1 82 1 9 oy 1 62¢' 2m
y o O+ lsm 6 36 (sm 6 5@) T nio el — TRz E + v.
(19.7)

19-2 Spherically symmetric solutions

Let’s first try to find some very simple function that satisfies the horrible
equation in (19.7). Although the wave function ¥ will, in general, depend on the
angles ¢ and ¢ as well as on the radius r, we can see whether there might be a special
situation in which ¢ does not depend on the angles. For a wave function that
doesn't depend on the angles, none of the amplitudes will change in any way if
you rotate the coordinate system. That means that all of the components of the
angular momentum are zero. Such a ¢ must correspond to a state whose total
angular momentum is zero. (Actually, it is only the orbital angular momentum
which is zero because we still have the spin of the electron, but we are ignoring
that part.) A state with zero orbital angular momentum is called by a special name.
It is called an “s-state”—you can remember “s for spherically symmetric.”{

t As usual, e? = ¢2/4re.

1 Since these special names are part of the common vocabulary of atomic physics, you
will just have to learn them. We will help out by putting them together in a short “dic-
tionary” later in the chapter.

19-2



Now 1f ¢ is not going to depend on 6 and ¢ then the entire Laplacian contains
only the first term and Eq. (19.7) becomes much simpler:

1 d° 2m e’
L w=-2(s+2) (19.8)
Before you start to work on solving an equation like this, it’s a good 1dea to get

rid of all excess constants like e2, m, and #, by making some scale changes. Then
the algebra will be easier. If we make the following substitutions:

h2
r = ;1-1—95'()’ (199)
and
E=me (19.10)
= © :

then Eq. (19.8) becomes (after multiplying through by p)

2
‘% = — <e + %>p¢. (19.11)

These scale changes mean that we are measuring the distance r and energy E as
multiples of “natural” atomic units. That is, p = r/rp, where rp = #%/me?,
is called the “Bohr radius” and is about 0.528 angstroms. Similarly, ¢ = E/Ep,
with Ep = me*/2h%. This energy is called the “Rydberg” and is about 13.6
electron volts.

Since the product py appears on both sides, it is convenient to work with it
rather than with ¢ itself. Letting

o =1, (19.12)
we have the more simple-looking equation
d*f 2

Now we have to find some function f which satisfies Eq. (19.13)—in other
words, we just have to solve a differential equation. Unfortunately, there is no
very useful, general method for solving any given differential equation. You just
have to fiddle around. Our equation is not easy, but people have found that it
can be solved by the following procedure. First, you replace f, which 1s some
function of p, by a product of two functions

flp) = e"*g(p). (19.14)

This just means that you are factoring e~* out of f(p). You can certainly do that
for any f(p) at all. This just shifts our problem to finding the right function g(p).
Sticking (19.14) into (19.13), we get the following equation for g:
d’g dg , (2 A
Since we are free to choose a, let’s make

a? = —¢, (19.16)
and get
&g _

dg [ 2

Y ou may think we are no better off than we were at Eq. (19.13), but the happy
thing about our new equation is that it can be solved easily in terms of a power
series in p (It is possible, in principle, to solve (19.13) that way too, but 1t 1s
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much harder.) We are saying that Eq. (19.17) can be satisfied by some g(p) which
can be written as a series,

o) = 3 a, (19.18)
k=1

in which the g, are constant coefficients. Now all we have to do is find a suitable
infinite set of coefficients! Let’s check to see that such a solution will work. The
first derivative of this g(p) is

A=1
and the second derivative is
d’g - k—2
7k > ak(k — 1)p* 2.

k=1

Using these expressions in (19.17) we have

S k(k = Dage*™? — 3 2akarg*™" + > 240" = 0. (19.19)
k=1 k=1 k=1

It’s not obvious that we have succeeded; but we forge onward. It will all look
better if we replace the first sum by an equivalent. Since the first term of the sum
is zero, we can replace each k by k 4+ 1 without changing anything in the infinite
series; with this change the first sum can equally well be written as

>k + Dkagypn
k=1
Now we can put all the sums together to get
>5[k + Dkaeyy — 20ka + 2a5)p' ™" = 0. (19.20)
k-'=1

This power series must vanish for all possible values of p. 1t can do that only
if the coefficient of each power of p is separately zero. We will have a solution
for the hydrogen atom if we can find a set a; for which

k + Dkaryy — 2(ak — Da, = 0 (19.21)

for all k > 1. That 1s certainly easy to arrange. Pick any a; you like. Then
generate all of the other coefficients from

Aak — 1),
k(k +1) °*

Aryy = (19.22)
With this you will get a,, a3, a4, and so on, and each pair will certainly satisfy
(19.21). We get a series for g(p) which satisfies (19.17). With it we can make a
¥, that satisfies Schrodinger’s equation. Notice that the solutions depend on the
assumed energy (through «), but for each value of ¢, there 1s a corresponding series.

We have a solution, but what does it represent physically? We can get an
idea by seeing what happens far from the proton—for large values of p. Out there,
the high-order terms of the series are the most important, so we should look at
what happens for large k. When k > 1, Eq. (19.22) is approximately the same as

2a
g4y = & Ak,

which means that
'3
Uppr =~ Q,;i,)—- (19.23)

But these are just the coefficients of the series for e*2*. The function of g is a
rapidly increasing exponential. Even coupled with e~ to produce f(p)—see
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Eq. (19.14)—it still gives a solution for f(p) which goes like ¢* for large p. We
have found a mathematical solution but not a physical one. It represents a situa-
tion in which the electron is /east likely to be near the proton! It is always more
likely to be found at a very large radius p. A wave function for a bound electron
must go to zero for large p.

We have to think whether there is some way to beat the game, and there 1s.
Observe! If it just happened by luck that « were equal to 1/n, where n 1s any
integer, then Eq. (19.22) would make a,,; = 0. All higher terms would also be
zero. We wouldn’t have an infinite series but a finite polynomial. Any polynomial
increases more slowly than ¢**, so the term ¢~ will eventually beat it down, and
the function f will go to zero for large p. The only bound-state solutions are those
for whicha = 1/n, with n = 1,2, 3, 4, and so on.

Looking back to Eq. (19.16), we see that the bound-state solutions to the
spherically symmetric wave equation can exist only when

L1,
916 n2

The allowed energies are just these fractions times the Rydberg, Er = me*/2#2,
or the energy of the nth energy level is

E, = —Ep ;ll— (19.24)

There is, incidentally, nothing mysterious about negative numbers for the energy.
The energies are negative because when we chose to write ¥ = —e?/r, we picked
our zero point as the energy of an electron located far from the proton. When it
is close to the proton, its energy is less, so somewhat below zero. The energy is
lowest (most negative) for n = 1, and increases toward zero with increasing n.

Before the discovery of quantum mechanics, it was known from experimental
studies of the spectrum of hydrogen that the energy levels could be described by
Eq. (19.24), where Er was found from the observations to be about 13.6 electron
volts. Bohr then devised a model which gave the same equation and predicted
that Eg should be me*/2h2. But it was the first great success of the Schrédinger
theory that it could reproduce this result from a basic equation of motion for the
electron.

Now that we have solved our first atom, let’s look at the nature of the solution
we got. Pulling all the pieces together, each solution looks like this:

. Yo = f—"‘@ =¢ _:n £.(0), (19.25)
g(p) = Zv; arp* (19.26)

and .
Qi1 = %”—;—1;—) a. (19.27)

So long as we are mainly interested in the relative probabilities of finding the
electron at various places we can pick any number we wish for a;. We may as well
set a; = 1. (People often choose a; so that the wave function is ‘“normalized,”
that is, so that the integrated probability of finding the electron anywhere 1n the
atom is equal to 1. We have no need to do that just now.)

For the lowest energy state, n = 1, and

Vi) = e™". (19.28)

For a hydrogen atom in 1ts ground (lowest-energy) state, the amplitude to find the
electron at any point drops off exponentially with the distance from the proton.
It is most likely to be found right at the proton, and the characteristic spreading
distance is about one unit in p, or about one Bohr radius, rz.
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Fig. 19-2. The wave functions for
the first three | = O states of the hydro-
gen atom. (The scales are chosen so that
the total probabilities are equal.)

Putting n = 2 gives the next higher level. The wave function for this state
will have two terms. It 1s

Ya(p) = <1 — g) e "2, (19.29)

The wave function for the next level 1s

¥3(p) = (1 — 233 22—7 p2> e~*/3, (19.30)

The wave functions for these first three levels are plotted in Fig. 19-2. You can
see the general trend All of the wave functions approach zero rapidly for large
p after oscillating a few times. In fact, the number of “bumps” 1s just equal to
n—or, if you prefer, the number of zero-crossings of ¥, 1sn — 1.

¥

n=2

19-3 States with an angular dependence

In the states described by the y,,(r) we have found that the probability ampli-
tude for finding the electron 1s spherically symmetric—depending only on r, the
distance for the proton. Such states have zero orbital angular momentum. We
should now 1nquire about states which may have some angular dependences.

We could, if we wished, just investigate the strictly mathematical problem of
finding the functions of r, 8, and ¢ which satisfy the differential equation (19.7)—
putting in the additional physical conditions that the only acceptable functions
are ones which go to zero for large ». You will find this done in many books.
We are going to take a short cut by using the knowledge we already have about
how amplitudes depend on angles in space.

The hydrogen atom in any particular state 1s a particle with a certain “spin”
J—the quantum number of the total angular momentum. Part of this spin comes
from the electron’s intrinsic spin, and part from the electron’s motion. Since
each of these two components acts independently (to an excellent approximation)
we will again ignore the spin part and think only about the “orbital” angular
momentum. This orbital motion behaves, however, just like a spin. For example,
if the orbital quantum number is /, the z-component of angular momentum can
bel, /] —1,1—2,...,—1 (We are, as usual, measuring in umts of #.) Also,
all the rotation matrices and other properties we have worked out still apply
(From now on we will really ignore the electron’s spin; when we speak of “angular
momentum” we will mean only the orbital part.)

Since the potential ¥ 1n which the electron moves depends only on r and not
on # or ¢, the Hamiltonian is symmetric under all rotations. It follows that the
angular momentum and all 1ts components are conserved. (This is true for motion
in any “‘central field”"—one which depends only on r—so is not a special feature of
the Coulomb e?/r potential )
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Now let's think of some possible state of the electron; its internal angular
structure will be characterized by the quantum number /. Depending on the
“orientation” of the total angular momentum with respect to the z-axis, the
z-component of angular momentum will be m, which is one of the 2/ + 1 possi-
bilities between +/ and —/. Let’s say m = 1. With what amplitude will the elec-
tron be found on the z-axis at some distance r? Zero. An electron on the z-axis
cannot have any orbital angular momentum around that axis. Alright, suppose
m is zero, then there can be some nonzero amplitude to find the electron at each
distance from the proton. We’ll call this amplitude F(r). It is the amplitude to
find the electron at the distance r up along the z-axis, when the atom is in the
state | /, 0), by which we mean orbital spin / and z-component m = 0.

If we know Fy(r) everything is known. For any state |/, m), we know the
amplitude y;,,,(r) to find the electron anywhere in the atom. How? Watch. Suppose
we have the atom in the state | /, m), what is the amplitude to find the electron at
the angle 6, ¢ and the distance r from the origin? Put a new z-axis, say 2’, at that
angle (see Fig. 19-3), and ask what is the amplitude that the electron will be at
the distance r along the new axis z’? We know that it cannot be found along 2z’
unless its z’-component of angular momentum, say », is zero. When m’ is zero,
however, the amplitude to find the electron along 2z’ is F;(r). Therefore, the result
is the product of two factors. The first is the amplitude that an atom in the state
| I, m) along the z-axis will be in the state | /, m’ = 0) with respect to the z'-axis.
Multiply that amplitude by F;(r) and you have the amplitude y; »(r) to find the
electron at (r, 8, ¢) with respect to the original axes.

Let’s write it out. We have worked out earlier the transformation matrices
for rotations. To go from the frame x, y, z to the frame x’, ', z’ of Fig. 19-3,
we can rotate first around the z-axis by the angle ¢, and then rotate about the new
y-axis (') by the angle . This combined rotation is the product

R (6)R.(9).

The amplitude to find the state /, m’ = 0 after the rotation is

(I,0| Ry(®)RAe) | I, m). (19.31)
Our result, then, is

Yim() = (1,0 | R(OR(e) | I, m)Fi(r). (19.32)

The orbital motion can have only integral values of /. (If the electron can be
found anywhere at » > 0, there is some amplitude to have m = 0 in that direction.
And m = O states exist only for integral spins.) The rotation matrices for / = 1
are given in Table 17-2. For larger / you can use the general formulas we worked
out in Chapter 18. The matrices for R,(¢) and R,(6) appear separately, but you
know how to combine them. For the general case you would start with the state
| 1, m) and operate with R,(¢) to get the new state R.(¢) | /, m). Then you operate
on this state with R,(6) to get the state R,(6)R.(¢) | /, m) (which is just &' | I, m)).
Multiplying by (/, 0 | gives the matrix element (19.31).

The matrix elements of the rotation operation are algebraic functions of 6
and ¢. The particular functions which appear in (19.31) also show up in many
kinds of problems which involve waves in spherical geometries and so has been
given a special name. Not everyone uses the same convention; but one of the most
common ones is

(1L,O| Ry(O)R9) | I, m) = aYim(8, ¢). (19.33)

The functions Y, .(8, ¢) are called the spherical harmonics, and a is just a numerical
factor which depends on the definition chosen for Y; ,,. For the usual definition,

-
a= \/m . (19.34)

With this notation, the hydrogen wave functions can be written
Vin(r) = Y1,m(6, 9)F,(r). (19.35)
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Fig. 19-4. The decay of an excited

state of Ne2’,

The angle functions Y7,,.(6, ¢) are important not only 1in many quantum-
mechanical problems, but also in many areas of classical physics in which the V2
operator appears, such as electromagnetism. As another example of their use in
quantum mechanics, consider the disintegration of an excited state of Ne?’
(such as we discussed 1n the last chapter) which decays by emitting an a-particle
and going into O!°:

Ne?* — O'® + He'.

Suppose that the excited state has some spin / (necessarily an integer) and that the
z-component of angular momentum is m. We might now ask the following:
given [ and m, what 1s the amplitude that we will find the a-particle going off in a
direction which makes the angle 6 with respect to the z-axis and the angle ¢ with
respect to the xz-plane—as shown in Fig. 19-4.

To solve this problem we make, first, the following observation. A decay in
which the a-particle goes straight up along z must come from a state with m = 0.
This is so because both O!® and the a-particle have spin zero, and because their
motion cannot have any angular momentum about the z-axis Let’s call this
amplitude a (per unit solid angle). Then, to find the amplitude for a decay at the
arbitrary angle of Fig. 19-4, all we need to know is what amplitude the given imitial
state has zero angular momentum about the decay direction. The amplitude for
the decay at 6 and ¢ 1s then a times the amplitude that a state | /, m) with respect
to the z-axis will be in the state | /, 0) with respect to z’—the decay direction. This
latter amplitude is just what we have written in (19.31). The probabulity to see the
a-particle at 8, ¢ is

P(6,¢) = a® [{1,0| Ry(O)R.(¢) | 1, m)|*.

As an example, consider an initial state with / = 1 and various values of m.
From Table 17-2 we know the necessary amplitudes. They are

(1,0 RyOR(S) | 1, +1) = — \—}5 sin 6e',
(1,0 R,(O)R.(8) | 1,0) = cosé, (19.36)
(10| RAOR($) [ 1, ~1) = — Ql—i sin "7

These are the three possible angular distribution amplitudes—depending on the
m-value of the 1nitial nucleus.

Amplitudes such as the ones in (19.36) appear so often and are sufficiently
important that they are given several names. If the angular distribution amplitude
is proportional to any one of the three functions or any linear combination of them,
we say, “The system has an orbital angular momentum of one.” Or we may say,
“The Ne2% emits a p-wave a-particle.” Or we say, “The a-particle 1s emitted 1n
an / = 1 state.” Because there are so many ways of saying the same thing it is
useful to have a dictionary. If you are going to understand what other physicists
are talking about, you will just have to memorize the language. In Table 19-1
we give a dictionary of orbital angular momentum.

If the orbital angular momentum is zero, then there is no change when you
rotate the coordinate system and there s no variation with angle—the *““dependence”
on angle 1s as a constant, say 1. This is also called an “s-state”, and there is only
one such state—as far as angular dependence is concerned. If the orbital angular
momentum is 1, then the amplitude of the angular variation may be any one of the
three functions given—depending on the value of m—or it may be a linear combina-
tion. These are called “p-states,” and there are three of them. If the orbital angular
momentum 1s 2 then there are the five functions shown. Any linear combination
is called an **/ = 2,” or a “d-wave” amplitude. Now you can immediately guess
what the next letter is—what should come after s, p, d? Well, of course, f, g, A,
and so on down the alphabet! The letters don’t mean anything. (They did once
mean something—they meant ‘‘sharp” lines, “principal” lines, ““diffuse” lines and
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Table 19-1

Dictionary of orbital angular momentum

(! = ; = an integer)

Orbital
angular = ¢ Angular dependence Name Number of | Orbital
momentum, comp;;nen ’ of amplitudes am states parity
!
0 0 1 s 1 +
+1 - sin 0 e“”]
V2
1 <0 cos 8 r b 3 —
1
-1 ——sinfe®
V2 )
+2 Vo sin? § e2¢
4
+1 %ﬁsmocosﬁew’
2 < 0 3(3cos?6 — 1) d 5 +
-1 - -\/—651n0c050e—“”
2
-2 Ve sin? § e—2¢
4
3 L LO|ROR(P) |1, m Wl f
4 = Yin(0,¢) g 20 4+ 1 (=1y
5 J = P}(cos g)erm® h i

“fundamental” lines of the optical spectra of atoms. But those were in the days
when people did not know where the lines came from. After f there were no
special names, so we now just continue with g, 4, and so on.)

The angular functions in the table go by several names—and are sometimes
defined with slightly different conventions about the numerical factors that appear
out in front. Sometimes they are called “spherical harmonics,” and written as
Y, (0, ). Sometimes they are written P/*(cos 8)e*?, and if m = 0, simply as
Py(cos §). The functions Py(cos §) are called the “Legendre polynomials™ in
cos 6, and the functions P;*(cos 6) are called the “associated Legendre functions.™
You will find tables of these functions in many books.

Notice, incidentally, that all the functions for a given / have the property that
that they have the same parity—for odd / they change sign under an inversion and
for even / they don’t change. So we can write that the parity of a state of orbital
angular momentum [ is (—1)".

As we have seen, these angular distributions may refer to a nuclear disintegra-
tion or some other process, or to the distribution of the amplitude to find an elec-
tron at some place in the hydrogen atom. For instance, if an electron is 1n a p-state
(I = 1) the amplitude to find it can depend on the angle in many possible ways—
but all are linear combinations of the three functions for / = 1 in Table 19-1.
Let’s take the case cos 8. That’s interesting. That means that the amplitude 1s
positive, say, in the upper part (§ < m/2), 1s negative in the lower part (6 > m/2),
and is zero when 8 is 90°. Squaring this amplitude we see that the probability of
finding the electron varies with 6 as shown in Fig. 19-5—and is independent of ¢
This angular distribution is responsible for the fact that in molecular binding the
attraction of an electron in an/ = 1 state for another atom depends on direction—
1t is the origin of the directed valences of chemical attracuon.
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Fig. 19-5. A polar graph of cos® 6,
which is the relative probability of finding
an electron at various angles from the
z-axis {for a given r) in an atomic state
withl = 1 and m = O.



19-4 The general solution for hydrogen

In Eq. (19.35) we have written the wave functions for the hydrogen atom as

Yim(t) = Y1m(8, $)F(r). (19.37)

These wave functions must be solutions of the differential equation (19.7). Let’s
see what that means. Put (19.37) into (19.7); you get

Yim 8° (. 9Yim Fi  8Yim
y o ’)+r2smaao<s’ =35 ) T 7oz oe2

- 211';’ (E + --> YinF.  (19.38)

Now multiply through by »2/F; and rearrange terms. The result is

1 o . J Yi"{> 1 62)’Lm
sin 6 38 (s‘“o 3% ) T sn?e g

[Fz l: ;22 CF) + 5 7z (E + )” Yim  (19.39)

The left-hand side of this equation depends on 6 and ¢, but not on r. No matter
what value we choose for r, the left side doesn’t change. This must also be true
for the right-hand side. Although the quantity in the square brackets has r’s all
over the place, the whole quantity cannot depend on r, otherwise we wouldn’t
have an equation good for all ». As you can see, the bracket also does not depend
on § or ¢. It must be some constant. Its value may well depend on the /-value of
the state we are studying, since the function F; must be the one appropriate to that
state; we’ll call the constant K;. Equation (19.35) is therefore equivalent to two
equations:

1L o (. ,0Yim 1 9?
sin 6 99 (S‘“ o —a_;—> + g0z 302 = —Ki¥im (19.40)
19° F
32(F1)+h2 (E+ ) Fi=K - (19.41)

Now look at what we’ve done. For any state described by / and m, we know
the functions Y;,,,; we can use Eq. (19.40) to determine the constant K;. Putting
K, into Eq. (19.41) we have a differential equation for the function F;(r). If we
can solve that equation for F;(r), we have all of the pieces to put into (19.37) to
give Y(r).

What is K;? First, notice that it must be the same for all m (which go with a
particular /), so we can pick any m we want for Y, ,, and plug it into (19.40) to
solve for K;. Perhaps the easiest one to use is Y; ;. From Eq. (18.24),

R [L1) = e | L) (19.42)
The matrix element for R,() is also quite simple:
(LO|RA8) |1, 1y = b (sin 6), (19.43)
where b is some number.t Combining the two, we obtain

Yl,l < e”‘* sinl 6. (1944)

1 You can with some work show that this comes out of Eq. (18.35), but 1t is also easy
to work out from first principles following the ideas of Section 18-4. A state | /,/) can
be made out of 2/ spin one-half particles all with spins up; while the state | /, 0) would
have / up and !/ down. Under the rotation the amplitude that an up-spin remains up
1s cos 6/2, and that an up-spin goes down is sin 6/2. We are asking for the amplitude
that / up-spins stay up, while the other / up-spins go down. The amplitude for that 1s
(cos /2 sin 6/2)* which 1s the same as sin‘ 8.
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Putting this function into (19.40) gives
K =10+ 1. (19.45)

Now that we have determined K, Eq. (19.41) tells us about the radial function
Fi(r). It1s, of course, just the Schrodinger equation with the angular part replaced
by 1ts equivalent K;F;/r?. Let’s rewrite (19 41) in the form we had in Eq (19.8),
as follows:

e
~ G EtT T - (19.46)

1 d® 2m 2+ 1)h2}
- = = 1 F1.
A mystertous term has been added to the potential energy. Although we got this
term by some mathematical shenanigan, 1t has a simple physical origin. We can
give you an 1dea about where it comes from in terms of a semi-classical argument.
Then perhaps you will not find it quite so mysterious.

Think of a classical particle moving around some center of force. The total
energy is conserved and is the sum of the potential and kinetic energies

U = V(r) + imv? = constant.

In general, » can be resolved nto a radial component », and a tangential compo-
nent r8; then

v? = 2 + (r9)>

Now the angular momentum mr24 1s also conserved; say it is equal to L. We can
then write

mrie = L, or rf = —£’
mr

and the energy 1s

2

2

L
— 1,2 —
U= {mvi + V(@) + 3

If there were no angular momentum we would have just the first two terms.
Adding the angular momentum L does to the energy just what adding a term
L%/2mr? to the potential energy would do. But this is almost exactly the extra
term in (19 46) The only difference is that /(! 4+ 1) appears for the angular
momentum instead of /%42 as we might expect. But we have seen before (for ex-
ample, Volume II, Section 34-7)f that this is just the substitution that is usually
required to make a quasi-classical argument agree with a correct quantum-
mechanical calculation. We can, then, understand the new term as a “pseudo-
potential”” which gives the “centrifugal force” term that appears in the equations
of radial motion for a rotating system. (See the discussion of “pseudo-forces” in
Volume I, Section 12-5.)

We are now ready to solve Eq. (19.46) for Fy(r). 1t 1s very much like Eq.
(19.8), so the same technique will work again. Everything goes as before until
you get to Eq. (19.19) which will have the additional term

=0+ 1Y ap' (19.47)
k=1

This term can also be written as
~I( + 1){"—; -3 ak+1pk‘1}- (19.48)
k=1

(We have taken out the first term and then shifted the runming index k down
by 1.) Instead of Eq. (19.20) we have
SUUkGe 4 1) — 10 + Djagy — 2ok — Dagdo*™!
k=1

A Dar o (19.49)
p
1 See Appendix to this volume.
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Fig. 19-6. Rough sketches showing
the general nature of some of the hydro-
gen wave functions. The shaded regions
show where the amplitudes are large.
The plus and minus signs show the relative
sign of the amplitude in each region.

There is only one term in p~!', so it must be zero. The coefficient a; must be zero
(unless [ = 0 and we have our previous solution). Each of the other terms is
made zero by having the square bracket come out zero for every k. This condition
replaces Eq. (19.21) by
_ 20k — 1)
Bl =k F D —Id+ 1)

(19.50)

This is the only significant change from the spherically symmetric case.

As before the series must terminate if we are to have solutions which can
represent bound electrons. The series will end at k = nif an = 1. We get again
the same condition on «, that it must be equal to 1/n, where n is some integer.
However, Eq. (19.50) also gives a new restriction. The index k cannot be equal to
1, the denominator becomes zero and a;,; is infinite. That is, since a; = 0, Eq.
(19.50) implies that all successive a; are zero until we get to a;yy, which can be
nonzero. This means that k must start at / + 1 and end at ».

Our final result is that for any / there are many possible solutions which we
can call F,,; where n > I + 1. Each solution has the energy

4
me” 1
En = - —272.—2 <;§>' (19.51)

The wave function for the state of this energy with the angular quantum numbers
land m is

'//n,l,m = Yl,m(a, d))Fn.l(p)a (1952)
with
pEua(p) = 7% > awp. (19.53)
ke=lt1

The coefficients a; are obtained from (19.50). We have, finally, a complete de-
scription of the states of a hydrogen atom.

19-5 The hydrogen wave functions

Let’s review what we have discovered. The states which satisfy Schrodinger’s
equation for an electron in a Coulomb field are characterized by three quantum
numbers n, I, m, all integers. The angular distribution of the electron amplitude
can have only certain forms which we call Y; ,,. They are labeled by I, the quantum
number of total angular momentum, and m, the “magnetic” quantum number,
which can range from —/to 4-/. For each angular configuration, various possible
radial distributions F, ;(r) of the electron amplitude are possible; they are labeled
by the principle quantum number n —which can range from / 4- 1to «. The energy
of the state depends only on n, and increases with increasing n.

The lowest energy, or ground, state is an s-state. It has { = 0, n = 0, and
m = 0. Itis a “nondegenerate’ state—there is only one with this energy, and its
wave function is spherically symmetric. The amplitude to find the electron is a
maximum at the center, and falls off monatonically with increasing distance from
the center. We can visualize the electron amplitude as a blob as shown in Fig.
19-6(a).

There are other s-states with higher energies, for n = 2,3,4,... For each
energy there is only one version (m = 0), and they are all spherically symmetric.
These states have amplhitudes which alternate in sign one or more times with
increasing r. There are n — 1 spherical nodal surfaces—the places where y goes
through zero. The 2s-state (/ = 0, n = 2), for example, will look as sketched in
Fig. 19-6(b). (The dark areas indicate regions where the amplitude is large, and
the plus and minus signs indicate the relative phases of the amplitude.) The energy
levels of the s-states are shown 1n the first column of Fig. 19-7.

Then there are the p-states—with / = 1. For each n, which must be 2 or
greater, there are three states of the same energy, one each form = +1,m = 0,
and m = —1. The energy levels are as shown in Fig. 19-7. The angular de-
pendences of these states are given in Table 19-1. For instance, for m = 0, if the
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amplitude is positive for § near zero, it will be negative for 6 near 180°. There 1s
a nodal plane coincident with the xy-plane. For n > 2 there are also spherical
nodes. The n = 2, m = 0 amplitude 1s sketched in Fig. 19-6(c), and the n = 3,
m = 0 wave function is sketched 1n Fig. 19-6(d).

You might think that since m represents a kind of “orientation™ in space,
there should be similar distributions with the peaks of amplitude along the x-axis
or along the y-axis. Are these perhaps the m = +1 and m = —1 states? No.
But since we have three states with equal energies, any linear combinations of the
three will also be stationary states of the same energy. It turns out that the *“x”-
state—which corresponds to the “z”-state, or m = 0 state, of Fig. 19-6(c)—is
a linear combination of the m = +1 and m = —1 states. The corresponding

YA 1)

'y”-state is another combination. Specifically, we mean that

= 1,0)

o _ LAl 4+ L1
V2

e |1’ +l> - ’1’ _1>.

’ V2

These states all look the same when referred to their particular axes.

The d-states (/ = 2) have five possible values of m for each energy, the lowest
energy has n = 3. The levels go as shown in Fig. 19-7. The angular dependences
get more complicated. For instance the m = 0 states have two conical nodes, so
the wave function reverses phase from +, to —, to + as you go around from the
north pole to the south pole. The rough form of the amplitude is sketched 1n (e)
and (f) of Fig. 19-6 for the m = 0 states with n = 3 and n = 4. Again, the
larger n’s have spherical nodes.

We will not try to describe any more of the possible states. You will find the
hydrogen wave functions described in more detail in many books. Two good
references are L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics,
McGraw-Hill (1935); and R. B. Leighton, Principles of Modern Physics, McGraw-
Hill (1959). You will find in them graphs of some of the functions and pictorial
representations of many states.

We would like to mention one particular feature of the wave functions for
higher /: for / > 0 the amplitudes are zero at the center. That 1s not surprising,
since it’s hard for an electron to have angular momentum when its radius arm is
very small. For this reason, the higher the /, the more the amplitudes are ‘“pushed
away” from the center. If you look at the way the radial functions F(r) vary for
small r, you find from (19.53) that

Foi(r) = r'.

Such a dependence on r means that for larger /’s you have to go farther fromr = 0
before you get an appreciable amplitude. This behavior is, incidentally, determined
by the centrifugal force term in the radial equation, so the same thing will apply
for any potential that varies slower than 1/r? for small r—which most atomic
potentials do.

19-6 The periodic table

We would like now to apply the theory of the hydrogen atom in an approxi-
mate way to get some understanding of the chemist’s periodic table of the elements.
For an element with atomic number Z there are Z electrons held together by the
electric attraction of the nucleus but with mutual repulsion of the electrons. To
get an exact solution we would have to solve Schrodinger’s equation for Z electrons
in a Coulomb field. For helium the equation is
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where V? 1s a Laplacian which operates on ry, the coordinate of one electron;
V3 operates on r,; and 1o = |r; —ro|. (We are again neglecting the spin of the
electrons.) To find the stationary states and energy levels we would have to find
solutions of the form

‘// = f(rl,rg)e_(”ﬁ””.

The geometrical dependence is contained in f, which 1s a function of six variables
—the simultaneous positions of the two electrons. No one has found an analytic
solution, although solutions for the lowest energy states have been obtained by
numerical methods.

With 3, 4, or 5 electrons 1t is hopeless to try to obtain exact solutions, and 1t 1s
going too far to say that quantum mechanics has given a precise understanding of
the periodic table. It is possible, however, even with a sloppy approximation—and
some fixing—to understand, at least qualitatively, many chemical properties
which show up in the periodic table.

The chemical properties of atoms are determined primarily by their lowest
energy states. We can use the following approximate theory to find these states
and their energies. First, we neglect the electron spin, except that we adopt the
exclusion principle and say that any particular electronic state can be occupied
by only one electron. This means that any particular orbital configuration can
have up to two electrons—one with spin up, the other with spin down. Next we
disregard the details of the interactions between the electrons in our first approxi-
mation, and say that each electron moves in a central field which is the combined
field of the nucleus and all the other electrons. For neon, which has 10 electrons,
we say that one electron sees an average potential due to the nucleus plus the other
nine electrons. We imagine then that in the Schrodinger equation for each electron
we put a V(r) which is a 1/r field modified by a spherically symmetric charge
density coming from the other electrons.

In this model each electron acts like an independent particle. The angular
dependence of its wave function will be just the same as the ones we had for the
hydrogen atom. There will be s-states, p-states, and so on; and they will have the
various possible m-values. Since V(r) no longer goes as 1/r, the radial part of the
wave functions will be somewhat different, but it will be qualitatively the same, so
we will have the same radial quantum numbers, n. The energies of the states will
also be somewhat different.

H

With these ideas, let’s see what we get. The ground state of hydrogen has
I = m = 0 and n = 1; we say the electron configuration is 1s. The energy is
—13.6 ev. This means that it takes 13.6 electron volts to pull the electron off the
atom. We call this the ““ionization energy”, W;. A large ionization energy means
that it is harder to pull the electron off and, 1n general, that the material is chem-
ically less active.

He

Now take helium. Both electrons can be in the same lowest state (one spin
up and the other spin down). In this lowest state the electron moves in a potential
which is for small r like a Coulomb field for z = 2 and for large r like a Coulomb
field for z = 1. The result is a “hydrogen-like” 1s state with a somewhat lower
energy. Both electrons occupy identical 1s states (! = 0, m = 0). The observed
1onization energy (1o remove one electron) is 24.6 electron volts. Since the 1s
“shell” is now filled—we allow only two electrons—there is practically no tendency
for an electron to be attracted from another atom. Helium is chemically inert.

L

The lithium nucleus has a charge of 3. The electron states will again be hy-
drogen-like, and the three electrons will occupy the lowest three energy levels.
Two will go into 1s states and the third will go into ann = 2 state. But with/ = 0
or [ = 1? In hydrogen these states have the same energy, but in other atoms they
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don’t, for the following reason. Remember that a 2s state has some amplitude to
be near the nucleus while the 2p state does not. That means that a 2s electron will
feel some of the triple electric charge of the Li nucleus, but that a 2p electron will
stay out where the field looks like the Coulomb field of a single charge. The extra
attraction lowers the energy of the 2s state relative to the 2p state. The energy
levels will be roughly as shown in Fig. 19-8—which you should compare with the
corresponding diagram for hydrogen in Fig. 19-7. So the lithium atom will have
two electrons in 1s states and one in a 2s. Since the 2s electron has a higher energy
than a 1s electron it is relatively easily removed. The ionization energy of lithium
is only 5.4 electron volts, and it is quite active chemically.

So you can see the patterns which develop; we have given in Table 19-2 a
list of the first 36 elements, showing the states occupied by the electrons in the
ground state of each atom. The Table gives the ionization energy for the most
loosely bound electron, and the number of electrons occupying each “shell”—
by which we mean states with the same n. Since the different /-states have different

Table 19-2

The electron configurations of the first 36 elements

Electron Configuration

VA Element Wi(ev)
1s 2s 2p|3s 3p 3d|4s 4p 4d 4f

1 | H hydrogen 13.6 1
2 | He helium 24.6 2
3| Li lithium 5.4 1
4 | Be beryllium 9.3 2
5| B boron 8.3 2 1
6 { C carbon 11.3 FILLED | 2 2 Number of electrons
7 | N nitrogen 14.5 (¥} 2 3 in each state
81 O oxygen 13.6 2 4
9 F fluorine 174 2 5
10 | Ne neon 21.6 2 6
11 | Na sodium 5.1 1
12 | Mg magnesium 7.6 2
13 | Al aluminum 6.0 2 1
14 | Si  silicon 8.1 —FILLED— 2 2
15 { P phosphorus | 10.5 2 3
16 | S sulfur 10.4 2 ®) 2 4
17 | Cl chlorine 13.0 2 5
18 | A argon 15.8 2 6
19 | K potassium 43 1
20 | Ca calcium 6.1 2
21 | Sc scandium 6.5 1|2
22 | Ti titanium 6.8 212
23 | V  vanadium 6.7 ——FILLED—— 3|2
24 | Cr chromium 6.8 511
25 | Mn manganese 7.4 ) ®) ®) 512
26 | Fe iron 7.9 6| 2
27 | Co cobalt 7.9 710 2
28 | Ni nickel 7.6 8| 2
29 | Cu copper N 104 1
30 | Zn zinc 9.4 10| 2
31 | Ga gallium 6.0 2 1
32 | Ge germanium 7.9 — FILLED—— 2 2
33 | As arsenic 9.8 2 3
34 | Se selenium 9.7 2 4
35 | Br bromine 11.8 @ ® 18 2 5
36 | Kr krypton 14.0 2 6

19-15

NE
Of =--—— == mmmmmmmmmm oo
oere——e=226
_,:—-‘S—__— 44 _.-——~ ’,"—3
e AT
4s __ - = 3d__--
/39,/”
3s _--~
- .2
;7_;
2p .77
28 -~
e |
] [ d f

Fig. 19-8. Schematic energy level
diagram for an atomic electron with other
electrons present. (The scale is not the
same as Fig. 19-7.)



energies, each /-value corresponds to a sub-shell of 2(2/ 4 1) possible states (of
different m and electron spin). These all have the same energy—except for some
very small effects we are neglecting.

Be

Beryllium is like lithium except-that it has two electrons in the 2s state as
well as two in the filled s shell.

B to Ne

Boron has 5 electrons. The fifth must go into a 2p state. Thereare2 X 3 = 6
different 2p states, so we can keep adding electrons until we get to a total of 8.
This takes us to neon. As we add these electrons we are also increasing Z, so the
whole electron distribution gets pulled in closer and closer to the nucleus and the
energy of the 2p states goes down. By the time we get to neon the ionization energy
is up to 21.6 volts. Neon does not easily give up an electron. Also there are no
more low-energy slots to be filled, so it won’t try to grab an extra electron. Neon
is chemically inert. Fluorine, on the other hand, does have an empty position where
an electron can drop into a state of low energy, so it is quite active in chemical
reactions.

Na to A

With sodium the eleventh electron must start a new shell—going into a 3s
state. The energy level of this state is much higher; the ionization energy jumps
down; and sodium is an active chemical. From sodium to argon the s and p states
with n = 3 are occupied in exactly the same sequence as for lithium to neon.
Angular configurations of the electrons in the outer unfilled shell have the same
sequence, and the progression of ionization energies is quite similar. You can see
why the chemical properties repeat with increasing atomic number. Magnesium
acts chemically much like beryllium, silicon like carbon, and chlorine like fluorine.
Argon is inert like neon.

You may have noticed that there is a slight peculiarity in the sequence of
ionization energies between lithium and neon, and a similar one between sodium
and argon. The last electron is bound to the oxygen atom somewhat less than
we might expect. And sulphur is similar. Why should that be? We can under-
stand it if we put in just a little bit of the effects of the interactions between in-
dividual electrons. Think of what happens when we put the first 2p electron onto
the boron atom. It has six possibilities—three possible p-states, each with two
spins. Imagine that the electron goes with spin up into the m = 0 state, which
we have also called the “z” state because it hugs the z-axis. Now what will happen
in carbon? There are now two 2p electrons. If one of them goes into the “z”
state, where will the second one go? It will have lower energy if it stays away from
the first electron, which it can do by going 1nto, say, the “x’" state of the 2p shell.
(This state is, remember, just a linear combination of the m = 41land m = —1
states.) Next, when we go to nitrogen, the three 2p electrons will have the lowest
energy of mutual repulsion if they go one each into the “x,” “y,” and “z” con-
figurations. For oxygen, however, the jig is up. The fourth electron must go into
one of the filled states—with opposite spin. It is strongly repelled by the electron
already 1n that state, so its energy will not be as low as it might otherwise be, and
it is more easily removed. That explains the break in the sequence of binding
energies which appears between nitrogen and oxygen, and between phosphorus
and silicon.

K to Zn

After argon, you would, at first, think that the new electrons would start to
fill up the 3d states But they don’t. As we described earlier—and illustrated in
Fig. 19-7—the higher angular momentum states get pushed up in energy. By the
time we get to the 3d states they are pushed to an energy a little bit above the energy
of the 4s state. So in potassium the last electron goes into the 4s state. After this
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shell is filled (with two electrons) at calcium, the 3d states begin to be filled for
scandium, titanium, and vanadium.

The energies of the 3p and 4s states are so close together that small effects
can shift the balance either way. By the time we get to put four electrons into the
3d states, their repulsion raises the energy of the 4s state just enough that its energy
is slightly above the 3d energy, so one electron shifts over. For chromium we don’t
get a 4, 2 combination as we would have expected, but instead a 5, 1 combination.
The new electron added to get manganese fills up the 4s shell again, and the states
of the 3d shell are then occupied one by one until we reach copper.

Since the outermost shell of manganese, iron, cobalt, and nickel have the same
configurations, however, they all tend to have similar chemical properties. (This
effect is mueh more pronounced in the rare-earth elements which all have the same
outer shell but a progressively filling inner shell which has much less influence on
their chemical properties.)

In copper an electron 1s robbed from the 4s sheli, finally completing the 3d
shell. The energy of the 10, 1 combination is, however, so close to the 9, 2 con-
figuration for copper that just the presence of another atom nearby can shift the
balance. For this reason the two last electrons of copper are nearly equivalent,
and copper can have a valence of either 1 or 2 (It sometimes acts as though 1ts
electrons were in the 9, 2 combination.) Similar things happen at other places and
account for the fact that other metals, such as iron, combine chemically with either
of two valences. By zinc, both the 3d and 4s shells are filled once and for all.

Ga 1o Kr

From gallium to krypton the sequence proceeds normally again, filling the
4p shell. The outer shells, the energies, and the chemical properties repeat the
pattern of boron to neon and aluminum to argon.

Krypton, like argon and neon, is known as “noble” gas. All three are chem-
ically ““inert.” This means only that, having filled shells of relatively low energy,
there are few situations in which there is an energy advantage for them to join in a
simple combination with other elements. Having a filled shell 1s not enough.
Beryllium and magnesium have filled s-shells, but the energy of these shells is too
high to lead to stability. Similarly, one would have expected another ‘“noble”
element at nickel, if the energy of the 3d shell had been lower (or the 4s, higher).
On the other hand, krypton is not completely inert; it will form a weakly-bound
compound with chlorine.

Since our sample has turned up most of the main features of the periodic
table, we stop our examination at element number 36—there are still seventy or
so more!

We would Iike to bring up only one more point—that we not only can under-
stand the valences to some extent but also can say something about the directional
properties of the chemical bonds. Take an atom like oxygen which has four 2p
electrons. The first three go into “x,” “p,” and “z” states and the fourth will
double one of these states, leaving two—say “x” and “y”—vacant. Consider then
what happens in H2O. Each of the two hydrogens are willing to share an electron
with the oxygen, helping the oxygen to fill a shell. These electrons will tend to go
nto the “x” and “y” vacancies. So the water molecule should have the two hy-
drogen atoms making a right angle with respect to the center of the oxygen. The
angle is actually 105°. We can even understand why the angle 1s larger than 90°.
In sharing their electrons the hydrogens end up with a net positive charge. The
electric repulsion “strains” the wave functions and pushes the angle out to 105°.
The same situation occurs in H,S. But because the sulphur atom is larger, the
two hydrogen atoms are farther apart, there 1s less repulsion, and the angle 1s
only pushed out to about 93°. Selenium is even larger, so in H,Se the angle 1s
very nearly 90°.

We can use the same arguments to understand the geometry of ammonia,
H3;N. Nitrogen has room for three more 2p electrons, on each for the “x,” “y,”
and “z" wype states. The three hydrogens should join on at right angles to each
other. The angles come out a little larger than 90°—again from the electric repul-
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sion—but at least we see why the molecule of H3N is not flat. The angles in
phosphene, H 3P, are close to 90°, and in H3As are still closer. We assumed that
NH ; was not flat when we described it as a two-state system. And the nonflatness
is what makes the ammonia maser possible. Now we see that also that shape can
be understood from our quantum mechanics.

The Schrédinger equation has been one of the great triumphs of physics. By
providing the key to the underlying machinery of atomic structure it has given
an explanation for atomic spectra, for chemistry, and for the nature of matter.
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20

Operators

20-1 Operations and operators

All the things we have done so far in quantum mechanics could be handled
with ordinary algebra, although we did from time to time show you sorfie special
ways of writing quantum-mechanical quantities and equations. We would like
now to talk some more about some interesting and useful mathematical ways of
describing quantum-mechanical things. There are many ways of approaching the
subject of quantum mechanics, and most books use a different approach from the
one we have taken. As you go on to read other books you might not see right
away the connections of what you will find in them to what we have been doing.
Although we will also be able to get a few useful results, the main purpose of this
chapter is to tell you about some of the different ways of writing the same physics.
Knowing them you should be able to understand better what other people are
saying. When people were first working out classical mechanics they always wrote
all the equations in terms of x-, y-, and z-components. Then someone came along
and pointed out that all of the writing could be made much simpler by inventing
the vector notation. It’s true that when you come down to figuring something
out you often have to convert the vectors back to their components. But it’s
generally much easier to see what’s going on when you work with vectors and also
easier to do many of the calculations. In quantum mechanics we were able to
write many things in a simpler way by using the idea of the “state vector.” The
state vector |y) has, of course, nothing to do with geometric vectors in three
dimensions but is an abstract symbol that stands for a physical state, identified
by the “label,” or “name,” ¢. The idea is useful because the laws of quantum
mechanics can be written as algebraic equations in terms of these symbols. For
instance, our fundamental law that any state can be made up from a linear com-
bination of base states is written as

) =D Culi), (20.1)

where the C, are a set of ordinary (complex) numbers—the amplitudes C, = (/| ¢)
—while | 1), [ 2), | 3), and so on, stand for the base states in some base, or repre-
sentation.

If you take some physical state and do something to it—like rotating it, or
like waiting for the time Ar—you get a different state. We say, “performing
an operation on a state produces a new state.” We can express the same idea by
an equation:

l¢) = 41¥). (20.2)

An operation on a state produces another state. The operator A stands for some
particular operation. When this operation is performed on any state, say | ¢), it
produces some other state | ¢).

What does Eq. (20.2) mean? We define it this way. If you multiply the
equation by (i | and expand |y) according to Eq. (20.1), you get

(i1e) =D G A1) (20.3)

(The states | j) are from the same set as | i).) This is now just an algebraic equation.
The numbers (i | ¢) give the amount of each base state you will find in |¢), and
it is given in terms of a linear superposition of the amplitudes {j | ) that you find
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| ¥) in each base state. The numbers (i | 4 | j) are just the coefficients which tell
how much of (j| ) goes into each sum. The operator A4 is described numerically
by the set of numbers, or “matrix,”

Ay =il A1) (20.4)

So Eq. (20.2) is a high-class way of writing Eq. (20.3). Actually it is a little
more than that; something more is implied. In Eq. (20.2) we do not make any
reference to a set of base states. Equation (20.3) is an image of Eq. (20.2) in
terms of some set of base states. But, as you know, you may use any set you wish.
And this idea is implied in Eq. (20.2). The operator way of writing avoids making
any particular choice. Of course, when you want to get definite you have to choose
some set. When you make your choice, you use Eq. (20.3). So the operator
equation (20.2) is a more abstract way of writing the algebraic equation (20.3).
It’s similar to the difference between writing

c=aXb
instead of
¢ = ayb, — azb,,

¢y = ab, — asb,

c: = azb, — ayb..

The first way is much handier. When you want results, however, you will eventually
have to give the components with respect to some set of axes. Simularly, if you
want to be able to say what you really mean by 4, you will have to be ready to
give the matrix A4,, in terms of some set of base states. So long as you have in
mind some set 4;,, Eq. (20.2) means just the same as Eq. (20.3). (You should
remember also that once you know a matrix for one particular set of base states
you can always calculate the corresponding matrix that goes with any other base.
You can transform the matrix from one “representation” to another.)

The operator equation in (20.2) also allows a new way of thinking., If we
imagine some operator 4, we can use it with any state | ¢) to create a new state
A|¢). Sometimes a “state” we get this way may be very peculiar—it may not
represent any physical situation we are likely to encounter in nature. (For instance,
we may get a state that is not normalized to represent one electron.) In other
words, we may at times get ‘‘states” that are mathematically artificial. Such
artificial “states’ may still be useful, perhaps as the mid-point of some calculation.

We have already shown you many examples of quantum-mechanical op-
erators. We have had the rotation operator R,(8) which takes a state | y) and
produces a new state, which is the old state as seen in a rotated coordinate system.
We have had the parity (or inversion) operator P, which makes a new state by
reversing all coordinates. We have had the operators é,, &,, and &, for spin one-
half particles.

The operator J, was defined in Chapter 17 in terms of the rotation operator
for a small angle .

R = 1 + f% €. (20.5)

This just means, of course, that
R W) = [¥) + 7 € |¥). (20.6)

In this example, J, | ) is #1/ie times the state you get if you rotate | ) by the small
angle € and then subtract the original state. It represents a “state” which is the
difference of two states.

One more example. We had an operator p,—called the momentum operator
(x-component) defined in an equation like (20.6). If D,(L) is the operator which
20-2



displaces a state along x by the distance L, then j, 1s defined by

D) = 1+ 7 b, (20.7)

where 8 is a small displacement. Displacing the state | ) along x by a small dis-
tance 6 gives a new state | ¢’). We are saying that this new state is the old state
plus a small new piece

5 8P 1 0).

The operators we are talking about work on a state vector like | ), which is
an abstract description of a physical situation. They are quite different from
algebraic operators which work on mathematical functions. For nstance, d/dx
is an “operator” that works on f(x) by changing 1t to a new funcuon f’(x) =
df/dx. Another example is the algebraic operator V2. You can see why the same
word is used 1n both cases, but you should keep in mind that the two kinds of
operators are different. A quantum-mechanical operator 4 does nor work on an
algebraic function, but on a state vector like | ¢). Both kinds of operators are
used in quantum mechanics and often in similar kinds of equations, as you will
see a little later. When you are first learning the subject it is well to keep the
distinction always in mind. Later on, when you are more familiar with the subject,
you will find that it 1s less important to keep any sharp distinction between the
two kinds of operators. You will, indeed, find that most books generally use the
same notation for both!

We'll go on now and look at some useful things you can do with operators.
But first, one special remark. Suppose we have an operator 4 whose matrix in
some base is 4,, = (i | A |j). The amplitude that the state 4 | ) 1s also in some
other state | ¢) is (¢ | A |¢). Is there some meaning to the complex conjugate of
this amplitude? You should be able to show that

@lAlv* = wl4 o), (20.8)
where A" (read “A dagger”) is an operator whose matrix elements are
Al = (4,0 (20.9)

To get the i, j element of A" you go to the j, i element of A4 (the indexes are reversed)
and take its complex conjugate. The amplitude that the state 4" | ¢) is in | ¢) is
the complex conjugate of the amplitude that 4 |y) is in | ¢). The operator A' is
called the “Hermitian adjoint” of 4. Many important operators of quantum
mechanics have the special property that when you take the Hermitian adjoint,
you get the same operator back. If B is such an operator, then

B = 8,

and it is called a “‘self-adjoint” or “Hermitian,” operator.

20-2 Average energies

So far we have reminded you mainly of what you already know. Now we
would like to discuss a new question. How would you find the average energy of
a system—say, an atom? If an atom is in a particular state of definite energy and
you measure the energy, you will find a certain energy E. If you keep repeating
the measurement on each one of a whole series of atoms which are all selected to
be in the same state, all the measurements will give E, and the “average” of your
measurements will, of course, be just E.

Now, however, what happens if you make the measurement on some state
| ¢) which is not a stationary state? Since the system does not have a definite
energy, one measurement would give one energy, the same measurement on another
atom in the same state would give a different energy, and so on. What would you
get for the average of a whole series of energy measurements?
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We can answer the question by projecting the state | ¢) onto the set of states
of definite energy. To remind you that this is a special base set, we’ll call the states
| 7.). Each of the states | 5,) has a definite energy E,. In this representation,

) =D Co ). (20.10)

When you make an energy measurement and get some number £,, you have found
that the system was in the state »,. But you may get a different number for each
measurement Sometimes you will get E;, sometimes E,, sometimes E3, and so
on. The probability that you observe the energy E, 1s just the probability of finding
the system in the state | 5;), which is, of course, just the absolute square of the
amplitude C; = (y, | ¢). The probability of finding each of the possible energies
E,is

P, =|C|% (20.11)

How are these probabilities related to the mean value of a whole sequence
of energy measurements? Let’s imagine that we get a series of measurements like
this: Ey, Eq, Eyq, Eg, Eq, Evo, E7, Es, Es, Ey, Eg, E4, and so on. We continue
for, say, a thousand measurements. When we are finished we add all the energies
and divide by one thousand. That’s what we mean by the average. There’s also
a short-cut to adding all the numbers. You can count up how many times you get
E,, say that is N, and then count up the number of times you get Es, call that
N, and so on. The sum of all the energies is certainly just

NiEy + N3Ey + N3Ey + -+ = 3 N,E..

The average energy is this sum divided by the total number of measurements which
is Just the sum of all the N,’s, which we can call N,

_ 2., NE,
Ey = == (20.12)

We are almost there. What we mean by the probability of something happen-
ing 1s just the number of times we expect it to happen divided by the total number
of tries. The ratio N,/N should—for large N—be very near to P,, the probability
of finding the state | 4,), although it will not be exactly P, because of the statistical
fluctuations. Let’s write the predicted (or “expected’) average energy as (E)ay;
then we can say that

(E)ay = »_ P.E.. (20.13)

The same arguments apply for any measurement. The average value of a measured
quantity A4 should be equal to

<A>av = Z P1An

where A, are the various possible values of the observed quantity, and P, is the
probability of getting that value.
Let’s go back to our quantum-mechanical state |¢). It’s average energy 1s

(Edav = ) |C.’E, = Y, CTC.E.. (20.14)
Now watch this trickery! First, we write the sum as

(2

Next we treat the left-hand (¢ | as a common “factor.” We can take this factor
out of the sum, and write it as

Wl ‘Z | n)Em | ¢>;.
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This expression has the form

W[ ¢)
where | ¢) is some “cooked-up” state defined by
[6) = D | n)Em | ¥). (20.16)

1t is, in other words, the state you get 1if you take each base state | ,) in the amount
E, <’71 ! lﬁ>

Now remember what we mean by the states | 5,). They are supposed to be
the stationary states—by which we mean that for each one,

H"’h) = Et|ﬂz>-

Since E, is just a number, the right-hand side is the same as | n,)E,, and the sum
in Eq. (20.16) is the same as

DH| n)(m | ¥).
7
Now i appears only in the famous combination that contracts to unity, so
Zﬁ| 771)("71]‘!’) = ﬁ2| 771)(’72]‘[’) = ﬁl¢>

Magic! Equation (20.16) is the same as
|6) = H|¥). (20.17)

The average energy of the state | ¢) can be written very prettily as
(Bl = W 1H[¥). (20.18)

To get the average energy you operate on | ¢) with H, and then multiply by (y |.
A simple result.

Our new formula for the average energy is not only pretty. It is also useful,
because now we don’t need to say anything about any particular set of base
states. We don’t even have to know all of the possible energy levels. When we go
to calculate, we’ll need to describe our state in terms of some set of base states,
but if we know the Hamiltonian matrix H,, for thar set we can get the average
energy. Equation (19.18) says that for any set of base states | i), the average
energy can be calculated from

(Edav = 2 WX H| )|, (20.19)

where the amplitudes (i | H | j) are just the elements of the matrix H,,.
Let’s check this result for the special case that the states | /) are the definite
energy states. For them, H|j) = E,|j).so (| H|j) = E, §,, and

(Ehow = 22 WIDES,(1¥) = D E¥ i)i]¥),
(%] 1
which is right.

Equation (20.19) can, incidentally, be extended to other physical measure-
ments which you can express as an operator. For instance, L, is the operator of
the z-component of the angular momentum L. The average of the z-component
for the state | ¢) is

<L2>av = <‘l’ Il:z ] ¢>'

One way to prove it is to think of some situation in which the energy is proportional
to the angular momentum. Then all the arguments go through in the same way.

20-5



In summary, if a physical observable A is related to a suitable quantum-
mechanical operator A, the average value of A for the state | ¢) is given by

(Aav = W1 4| ¥). (20.20)
By this we mean that
Ao = W1 9), (20.21)
with i
[¢) = A|¢). (20.22)

20-3 The average energy of an atom

Suppose we want the average energy of an atom 1n a state described by a
wave function ¢(r); How do we find it? Let’s first think of a one-dimensional
situation with a state | ¢) defined by the amplitude (x | ¢) = ¥(x). We are asking
for the special case of Eq. (20.19) applied to the coordinate representation. Follow-
ing our usual procedure, we replace the states | 1) and | /) by | x) and | x’), and
change the sums to integrals. We get

(Eo = [ [@1x)0x| B2 [ 9) dx dx' (20.23)
This integral can, if we wish, be written in the following way:
/ W | x){x | ¢)dx, (20.24)
with
(x|9) = [ H| %) |9) dx. (20.25)

The integral over x’ in (20.25) is the same one we had in Chapter 16—see Eq.
(16.50) and Eq. (16.52)—and is equal to

2 2
— W) + VW),

We can therefore write

(x19) = {— L+ V(x)] e (20.26)

Remember that (¢ | x) = (x| ¥)* = ¢*(x); using this equality, the average
energy in Eq. (20.23) can be written as

2 g2
(E)ay = / v*(x) { - —2% ;ﬁ + V] ¥(x) dx. (20.27)

Given a wave function y(x), you can get the average energy by doing this integral.
You can begin to see how we can go back and forth from the state-vector ideas
to the wave-function ideas.

The quantity in the braces of Eq. (20.27) is an algebraic operator.} We will
write it as 30

o h2 dZ
= Tmae TV
With this notation Eq. (20.23) becomes
(Bar = [¥*()RY(x) dx. (20.28)

The algebraic operator ¢ defined here is, of course, not identical to the
quantum-mechanical operator H. The new operator works on a function of
position ¥(x) = (x|¢) to give a new function of x, ¢(x) = (x| ¢); while H

1 The “operator” V(x) means “multiply by V(x).”
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operates on a state vector | ) to give another state vector | ¢), without implying
the coordinate representation or any particular representation at all. Nor 15 &
strictly the same as H even 1n the coordinate representation. If we choose to
work in the coordinate representation, we would interpret A 1n terms of a matrix
(x| H| x'y which depends somehow on the two “indices™ x and x’; that is, we
expect—according to Eq. (20.25)—that (x| ¢) 1s related to all the amplitudes
(x| ¢) by an integration. On the other hand, we find that 3 1s a differential op-
erator. We have already worked out in Section 16-5 the connection between
(x| H| x') and the algebraic operator 3C.

We should make one qualification on our results. We have been assuming
that the amplitude y(x) = (x | ) is normalized. By this we mean that the scale
has been chosen so that

190 Pdx = 1;

so the probability of finding the electron somewhere is unity. If you should choose
to work with a ¢(x) which 1s not normalized you should write

[¥*xiep(x) dx
(Eay = ————— (20.29)

It’s the same thing.

Notice the similarity in form between Eq. (20.28) and Eq. (20.18). These
two ways of writing the same result appear often when you work with the x-repre-
sentation. You can go from the first form to the second with anyA4 which is a
local operator, where a local operator is one which in the integral

[x 1 A| 2% 1 9)

can be written as G ¥(x), where & is a differential algebraic operator. There are,
however, operators for which this is not true. For them you must work with
the basic equations in (20.21) and (20.22).

You can easily extend the derivation to three dimensions. The result is that}

(E)ay = [ W(r)iey(r)yd Vol, (20.30)
with
. o,
= — 5=V + V), (20.31)

and with the understanding that
[1¥1%dvol = 1. (20.32)

The same equations can be extended to systems with several electrons in a fairly
obvious way, but we won’t bother to write down the results.

With Eq. (20.30) we can calculate the average energy of an atomic state
even without knowing its energy levels. All we need is the wave function. It's
an important law. We’ll tell you about one interesting application. Suppose you
want to know the ground-state energy of some system—say the helium atom, but
it’s too hard to solve Schrodinger’s equation for the wave function, because there
are too many variables. Suppose, however, that you take a guess at the wave
function—pick any function you like—and calculate the average energy. That is,
you use Eq. (20.29)—generalized to three dimensions—to find what the average
energy would be if the atom were really in the state described by this wave function.
This energy will certainly be higher than the ground-state energy which is the lowest

1 We write d Vol for the element of volume. It is, of course, just dx dy dz, and the
integral goes from — = to 4+« 1n all three coordinates.
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P(x)

X

Fig. 20-1. A curve of probability
density representing a localized particle.

possible energy the atom can have.] Now pick another function and calculate its
average energy. If it is lower than your first choice you are getting closer to the
true ground-state energy. If you keep on trying all sorts of artificial states you
will be able to get lower and lower energies, which come closer and closer to the
ground-state energy. If you are clever, you will try some functions which have a
few adjustable parameters. When you calculate the energy it will be expressed
in terms of these parameters. By varying the parameters to give the lowest possible
energy, you are trying out a whole class of functions at once. Eventually you will
find that it is harder and harder to get lower energies and you will begin to be
convinced that you are fairly close to the lowest possible energy. The helium atom
has been solved 1n just this way—not by solving a differential equation, but by
making up a special function with a lot of adjustable parameters which are eventu-
ally chosen to give the lowest possible value for the average energy.

20-4 The position operator

What is the average value of the position of an electron in an atom? For any
particular state | ) what is the average value of the coordinate x? We’ll work in
one dimension and let you extend the ideas to three dimensions or to systems with
more than one particic. we have a state described by y(x), and we keep measuring
x over and over again. What is the average? It is

/ xP(x) dx,

where P(x) is the probability of finding the electron in a little element dx at x.
Suppose the probability density P(x) varies with x as shown in Fig. 20-1. The
electron is most likely to be found near the peak of the curve. The average value
of x is also somewhere near the peak. It is, in fact, just the center of gravity of
the area under the curve.

We have seen earlier that P(x) is just | ¢(x) |> = ¢*(x}¥(x), so we can write
the average of x as

(X)av = / PH(x)xY(x) dx. (20.33)

Our equation for (x),, has the same form as Eq. (20.33). For the average
energy, the energy operator & appears between the two s, for the average position
there is just x. (If you wish you can consider x to be the algebraic operator “multi-
ply by x.””) We can carry the parallelism still further, expressing the average posi-
tion in a form which corresponds to Eq. (20.18). Suppose we just write

<x>av = (‘/’ [0‘> (20.34)

la) = % [¥), (20.35)

with

and then see if we can find the operator ¥ which generates the state | «), which
will make Eq. (20.34) agree with Eq. (20.33). That is, we must find a | a), so that

Wle) = (O = [W]x0x(x|¥) dx. (20.36)
First, let’s expand (¢ | ¢) in the x-representation. It is
Wla) = [@]x)x]a)dx. (20.37)

Now compare the integrals in the last two equations. You see that in the x-repre-
sentation
x]a) = x(x|¢¥). (20.38)

{ You can also look at it this way. Any function (that is, state) you choose can be
written as a linear combination of the base states which are definite energy states. Since
in this combination there is a mixture of higher energy states in with the lowest energy
state, the average energy will be higher than the ground-state energy.
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Operating on |y) with % to get | ) is equivalent to multiplying ¢(x) = (x |¢)
by x to get a(x) = (x| a). We have a definition of % in the coordinate representa-

tion.f
[We have not bothered to try to get the x-representation of the matrix of the
operator %. If you are ambitious you can try to show that

x|x]x) = x8(x — X). (20.39)

You can then work out the amusing result that
X|x) = x|x) (20.40)
The operator % has the interesting property that when it works on the base states

| x) it is equivalent to multiplying by x.]
Do you want to know the average value of x2? It is

v = [WHEY(x) dx. (20.41)
Or, if you prefer you can write
(XP)ay = @)

la’) = £2|¢). (20.42)

with

By £2 we mean %%—the two operators are used one after the other. With the
second form you can calculate {x2),, using any representation (base-states) you
wish. If you want the average of x", or of any polynomial in x, you can see how
to get it.

20-5 The momentum operator

Now we would like to calculate the mean momentum of an electron—again,
we'll stick to one dimension. Let P(p) dp be the probability that a measurement
will give a momentum between p and p + dp. Then

(Plav = [p P(p)dp. (20.43)

Now we let {p | ¢) be the amplitude that the state | ¢) is in a definite momentum
state | p). This is the same amplitude we called (mom p |¢) in Section 16-3 and
is a function of p just as (x | ) is a function of x. There we chose to normalize
the amplitude so that

1
P(p) = 5 Kp | )™ (20.44)
We have, then,

(oo = [ @1 000191 22 (2045)

The form is quite similar to what we had for (x)ay.
If we want, we can play exactly the same game we did with (x),,. First, we
can write the integral above as

Jwipwin & (20.46)

You should now recognize this equation as just the expanded form of the amplitude
(¢ | B)—expanded in terms of the base states of definite momentum. From Egq.

1 Equation (20.38) does not mean that | @) = x|¢¥). You cannot “factor out” the
(x|, because the multiplier x in front of {x |y) is a number which is different for each
state (x |. It is the value of the coordinate of the electron in the state | x). See Eq. (20.40).
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(20.45) the state | B) is defined in the momentum representation by

(P18 =ppl¥ (20.47)
That is, we can now write
(Pav = & |8 (20.48)
with
18) = B ¥, (20.49)

where the operator p is defined in terms of the p-representation by Eq. (20.47).
[Again, you can if you wish show that the matrix form of j is

(plplp) =pp — p), (20.50)
and that

plp)y =plp). (20.51)

It works out the same as for x.]

Now comes an interesting question. We can write (p),, as we have done in
Egs. (20.45) and (20.48), and we know the meaning of the operator p i the mo-
mentum representation. But how should we interpret p in the coordinate representa-
tion? That is what we will need to know if we have some wave function ¥(x),
and we want to compute 1ts average momentum. Let's make clear what we mean.
If we start by saying that (p),, is given by Eq. (20.48), we can expand that equation
in terms of the p-representation to get back to Eq. (20.45). If we are given the
p-description of the state—namely the amplitude (p | ¢), which is an algebraic
function of the momentum p—we can get (p | ¢) from Eq. (20.47) and proceed
to evaluate the integral. The question now is: What do we do 1f we are given a
description of the state in the x-representation, namely the wave function y(x) =
x| 9)?

Well, let’s start by expanding Eq. (20.48) in the x-representation. It is

(Plav = [ | x)x | 8) dx. (20.52)

Now, however, we need to know what the state | 8) is in the x-representation.
If we can find it, we can carry out the integral. So our problem 1s to find the
function B(x) = (x| B).

We can find it in the following way. In Section 16-3 we saw how {p | ) was
related to (x | 8). According to Eq. (16.24),

(p|8) = [e7*Nx|B)dx. (20.53)

If we know (p | 8) we can solve this equation for (x | 8). What we want, of course,
is to express the result somehow in terms of Y(x) = {(x |¥), which we are assuming
to be known. Suppose we start with Eq. (20.47) and again use Eq. (16.24) to write

(P18 = plpl¥) = p[e™ ™ My(x) dx. (20.54)
Since the 1ntegral is over x we can put the p inside the integral and write
(18 = [er py(x) dx. (20.55)

Compare this with (20.53). You would say that (x | 8) is equal to py(x). No, No!
The wave function {x | ) = B(x) can depend only on x—not on p. That's the
whole problem.

However, some ingenious fellow discovered that the integral in (20.55) could
be integrated by parts. The derivative of e ~*?*" with respect to x is (—1/h)pe™*?*/%
so the integral in (20.55) is equivalent to

A / 4 (e 7 ™Myy(x) dx.

1) dx
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If we integrate by parts, it becomes
_ h —px/h +e h/ —ipz/h d‘l’
5 [e v, + S /e P dx.

So long as we are considering bound states, so that y(x) goes to zero at x = =,
the bracket is zero and we have

_ h —ipx/h d‘l/
Now compare this result with Eq. (20.53). You see that
i
i

(x[8) =5 % ¥ (x). (20.57)

We have the necessary piece to be able to complete Eq. (20.52). The answer is

{(Plav = /\//*(x) S — Y(x) dx. (20.58)

We have found how Eq. (20.48) looks in the coordinate representation.
Now you should begin to see an interesting pattern developing. When we
asked for the average energy of the state | y) we said it was
(Edoy = | @), with [¢1) = H[¥).
The same thing is written in the coordinate world as

(E)ay = / Yr()$(x) dx  with ¢(x) = Toy(x).

Here 3 is an algebraic operator which works a function of x. When we asked
about the average value of x, we found that it could also be written

<x>av = <‘/’ | a)9 with |a> x | ¥).
In the coordinate world the corresponding equations are
Khav = [¥*(a@) dx, with a(x) = xp(x).
When we asked about the average value of p, we wrote

<p>uv = <‘p |6>’ with |B> = 13 I \b)

In the coordinate world the equivalent equations were

~ -

(Phav = / WBC) dx, with () = Ly

In each of our three examples we start with the state | ¢) and produce another
(hypothetical) state by a quantum-mechanical operator. In the coordinate repre-
sentation we generate the corresponding wave function by operating on the wave
function ¥(x) with an algebraic operator. There are the following one-to-one
correspondences (for one-dimensional problems):

R . h2 d.,

H—o% = T 2m dx? + V),

£ - X, (20.59)
.o _hd
Pe e = 5 5%
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Table 20-1

Physical Quantity Operator Coordinate Form
N . 2,
Energy H = ——V" 4+ V(@
2m
Position X x
y y
2 z
A h a
M _ =
omentum Pz @ T ax
. “ i d
Py (Pll = 7 a_y
a h 9
: @, = ==
b ; i 0z

) 20.
oy (20.60)
and we have inserted the x subscript on ® to remind you that we have been working
only with the x-component of momentum.

You can easily extend the results to three dimensions. For the other com-
ponents 'of the momentum,

R - h o
Py ’(Pu_fay’
. N h oo
b &= 5

If you want, you can even think of an operator of the vector momentum and write

- N /) d a a

p—® = 7(‘%5}"‘ ey@’*"ez&)’
where e,, e,, and e, are the unit vectors in the three directions. 1t looks even more
elegant if we write

po @ = ? v. (20.61)

Our general resultiis that for at least some quantum-mechanical operators,
there are corresponding algebraic operators in the coordinate representation.
We summarize our results so far—extended to three dimensions—in Table 20-1.
For each operator we have the two equivalent forms:

l¢) = 4|¥) (20.62)
or

o(r) = Gy(r). (20.63)

We will now give a few illustrations of the use of these ideas. The first one is
just to point out the relation between @ and . If we use @, twice, we get

o 32
(5)10); = — 25;2

1 In many books the same symbol is used for A and é, because they both stand for the
same physics, and because 1t is convenient not to have to write different kinds of letters.
You can usually tell which one is intended by the context
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This means that we can write the equality

L

5 (&0 + 8,8, + B85 + V).

5‘c =
Or, using the vector notation,

k=56 + VO). (20.64)
(In an algebraic operator, any term without the operator symbol ( ~ ) means just a
straight multiplication.) This equation is nice because it’s easy to remember if
you haven’t forgotten your classical physics. Everyone knows that the energy is
(nonrelativistically) just the kinetic energy p?/2m plus the potential energy, and
¢ is the operator of the total energy.

This result has impressed people so much that they try to teach students all
about classical physics before quantum mechanics. (We think differently!) But
such parallels are often misleading. For one thing, when you have operators, the
order of various factors is important; but that is not true for the factors in a
classical equation.

In Chapter 17 we defined an operator j, in terms of the displacement operator
D, by [see Eq. (17.27)]

I ‘V) = Dz(‘s) l \b> = <1 + % 13:5) l ‘1’); (20-65)

where & is a small displacement. We should show you that this is equivalent to
our new definition. According to what we have just worked out, this equation
should mean the same as

Vo) = o) + 25

But the right-hand side is just the Taylor expansion of ¢(x + &), which is certainly
what you get if you displace the state to the left by & (or shift the coordinates to
the right by the same amount). Our two definitions of p agree!

Let’s use this fact to show something else. Suppose we have a bunch of parti-
cles which we label 1, 2, 3, . . ., in some complicated system. (To keep things simple
we’ll stick to one dimension.) The wave function describing the state is a function
of all the coordinates x,, xg, X3, ... We can write it as y(x;, X3, X3,...). Now
displace the system (to the left) by 8. The new wave function

V(x1, X2, x3,...) = Y(xy + 8, x2+ 8, x3+ 45,...)
can be written as
\b,(xlv X2, X35+ - ) = ‘I’(xl’ X2y X3y« - -)

+ la dd 4

Ex—l 8x2

According to Eq. (20.65) the operator of the momentum of the state |y) (let’s
call it the total momentum) is equal to

- h)o a a
@total—?lg;l"i-gx—z-i‘g‘g‘i"“:‘

But this is just the same as
Protal = Po1 + oz + Fog + -+ - (20.67)

The operators of momentum obey the rule that the total momentum is the sum of
the momenta of all the parts. Everything holds together nicely, and many of the
things we have been saying are consistent with each other.
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Fig. 20-2. Rotation of the axes
around the z-axis by the smail angle €.

What 1s £2 Well, a point P at x and y 1n the new coordinate system (really x’
and y’, but we will drop the primes) was formerly at x — ey and y + ex, as you

can see from Fig. 20-2. Since the amplitude for the electron to be at Pisn’t changed
by the rotation of the coordinates we can write

Returning to our quantum-mechanical operators, we can write

20-6 Angular momentum

Let’s for fun look at another operation—the operation of orbital angular
momentum. In Chapter 17 we defined an operator.J, in terms of R,(¢), the operator
of a rotation by the angle ¢ about the z-axis. We consider here a system described
simply by a single wave function (), which is a function of coordinates only,
and does not take into account the fact that the electron may have its spin either
up or down.

That is, we want for the moment to disregard intrinsic angular
momentum and think about only the orbital part. To keep the distinction clear,

we’ll call the orbital operator L,, and define it in terms of the operator of a rotation
by an infinitesimal angle € by

teo1o = (1+1eL) 1w

(Remember, this definition applies only to a state | ) which has no internal spin
variables, but depends only on the coordinates r = x, y, x) If we look at the
state | ¢) in a new coordinate system, rotated about the z-axis by the small angle
€, We see a new state

1) = R.(e)| ¥).

If we choose to describe the state | ¢) in the coordinate representation—that

is, by 1ts wave function (r), we would expect to be able to write

V() = <1 + % € £z> w(x). (20.68)

V(2,2 = W+ @y = ex2) = WD) + o 5 — e o
(remembering that € 1s a small angle). This means that
é, = ?(x% —y %) (20.69)
That’s our answer. But notice. It is equivalent to
£, = x®, — yo,. (20.70)

L. = xp, — yp.. (20.71)

This formula 1s easy to remember because it looks like the familiar formula of
classical mechanics; it is the z-component of

L=rXp. (20.72)

One of the fun parts of this operator business is that many classical equations

get carried over into a quantum-mechanical form. Which ones don’t? There
had better be some that don’t come out right, because if everything did, then
there would be nothing different about quantum mechanics. There would be no
new physics. Here is one equation which is different. In classical physics

xp, — px = 0.

What is 1t in quantum mechanics?
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Let’s work it out in the x-representation. So that we’ll know what we are doing
we put in some wave function y(x). We have

X(P:,‘JJ(X) - @zx‘l'(x);
or

ha h 0
x? wnﬁ(x)—?é;)a//(x).

Remember now that the derivatives operate on everything to the right. We get

hoy h hoay h
The answer is not zero. The whole operation is equivalent simply to multiplication
by —#/i:

Rps — PuX = — (20.74)

A
i
If Plank’s constant were zero, the classical and quantum results would be the same,
and there would be no quantum mechanics to learn!

Incidentally, if any two operators 4 and B, when taken together like this:

AB — B4,

do not give zero, we say that *‘the operators do not commute.” And an equation
such as (20.74) is called a “‘commutation rule.” You can see that the commutation
rule for p, and y is

bsy — ¥b2 = 0.

There is another very important commutation rule that has to do with angular
momenta. It is

L.L,— LI, =ihl,. (20.75)

You can get some practice with % and p operators by proving it for yourself.

It is interesting to notice that operators which do not commute can also occur
in classical physics. We have already seen this when we have talked about rotation
in space. If you rotate something, such as a book, by 90° around x and then 90°
around y, you get something different from rotating first by 90° around y and then
by 90° around x. It is, in fact, just this property of space that is responsible for
Eq. (20.75).

20-7 The change of averages with time

Now we want to show you something else. How do averages change with
time? Suppose for the moment that we have an operator 4, which does not itself
have time in it in any obvious way. We mean an operator like % or p. (We exclude
things like, say, the operator of some external potential that was being varied with
time, such as V(x, f).) Now suppose we calculate (4 ),,, in some state | ¢), which is

(Aay = WA ). (20.76)

How will (4),, depend on time? Why should it? One reason might be that the
operator itself depended explicitly on time—for instance, if it had to do with a
time-varying potential like ¥(x, ). But even if the operator does not depend on
t, say, for example, the operator A = %, the corresponding average may depend
on time. Certainly the average position of a particle could be moving. How does
such a motion come out of Eq. (20.76) if 4 has no time dependence? Well, the
state | ) might be changing with time. For nonstationary states we have often
shown a time dependence explicitly by writing a state as | y(¢)). We want to show
that the rate of change of (4),y is given by a new operator we will call 4. Remem-
ber that A is an operator, so that putting a dot over the 4 does not here mean taking
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the time derivative, but 1s just a way of writing a new operator A which is defined by

& M = w1 A1), 20.77)

Our problem is to find the operator A.
First, we know that the rate of change of a state is given by the Hamiltonian.
Specifically,

i 31w = By 20.78)

This is just the abstract way of writing our original definition of the Hamiltonian:

d

., dC,
ih—* = ;H,]C,. (20.79)

If we take the complex conjugate of this equation, it is equivalent to

~ih 5 40| = WO A (20380)

Next, see what happens if we take the derivatives with respect to ¢ of Eq. (20.76).
Since each y depends on ¢, we have

d d P ~(d
4= (2 )iy + wia(2 0)- (2081)

Finally, using the two equations in (20.78) and (20.79) to replace the derivatives,
we get

d ] A PN
7 e = 3 LW BA W) — w1 AR ).
This equation is the same as
9 My = | (BA — A |9
dt ( )av - h I .
Comparing this equation with Eq. (20.77), you see that
A= 7’;(1?2 — A, (20.82)

That is our interesting proposition, and it is true for any operator A.
Incidentally, if the operator A4 should irself be time dependent, we would have
had

P SN 904
A=45@HL- AN + 5 (20.83)

Let us try out Eq. (20.82) on some example to see whether it really makes
sense. For instance, what operator corresponds to £? We say it should be

= }l (Hz — xH). (20.84)

What is this? One way to find out is to work it through in the coordinate repre-
sentation using the algebraic operator for 4¢. In this representation the commutator
is

N . " d } {hz d?
J{,x—x(}(l—‘ﬁa;;—’r V()C) X — X ﬁaﬁ"*‘V(X) .

If you operate with this or any wave function ¥(x) and work out all of the de-
rivatives where you can, you end up after a little work with

_ v,
2m dx
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But this is just the same as

. hoa
—1 E G)I\II,
so we find that
Hs = £H = —i% P (20.85)
or that
P
x =" (20.86)

A pretty result. It means that if the mean value of x is changing with time the
drift of the center of gravity is the same as the mean momentum divided by m.
Exactly like classical mechanics.

Another example. What is the rate of change of the average momentum of a
state? Same game. Its operator is

P = (Hp — pH). (20.87)

&~

Again you can work it out in the x representation. Remember that p becomes
d/dx, and this means that you will be taking the derivative of the potential energy
¥ (in the 30)—but only in the second term. It turns out that it is the only term
which does not cancel, and you find that

76 — 67 = —in Y
dx
or that

. dv
p=-9 (20.88)

Again the classical result. The right-hand side is the force, so we have derived
Newton’s law! But remember—these are the laws for the operators which give
the average quantities. They do not describe what goes on in detail inside an
atom.

Quantum mechanics has the essential difference that px is not equal to %p.
They differ by a little bit—by the small number #. But the whole wondrous compli-
cations of interference, waves, and all, result from the little fact that %p — px is
not quite zero.

The history of this idea is also interesting. Within a period of a few months in
1926, Heisenberg and Schrédinger independently found correct laws to describe
atomic mechanics. Schrodinger invented his wave function ¢(x) and found his
equation. Heisenberg, on the other hand, found that nature could be described
by classical equations, except that xp — px should be equal to #/i, which he could
make happen by defining them in terms of special kinds of matrices. In our lan-
guage he was using the energy-representation, with its matrices. Both Heisenberg’s
matrix algebra and Schrodinger’s differential equation explained the hydrogen
atom. A few months later Schrédinger was able to show that the two theories
were equivalent—as we have seen here. But the two different mathematical forms
of quantum mechanics were discovered independently.
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21

The Schrodinger Equation in a Classical
Context: A Seminar on Superconductivity

21-1 Schrodinger’s equation in a magnetic field

This lecture is only for entertainment. I would like to give the lecture in a
somewhat different style—just to see how it works out. It’s not a part of the course
—in the sense that it is not supposed to be a last minute effort to teach you some-
thing new. But, rather, I imagine that I’'m giving a seminar or research report on
the subject to a more advanced audience, to people who have already been educated
in quantum mechanics. The main difference between a seminar and a regular
lecture is that the seminar speaker does not carry out all the steps, or all the
algebra. He says: “If you do such and such, this is what comes out,” instead
of showing all of the details. So in this lecture I'll describe the ideas all the way
along but just give you the results of the computations. You should realize that
you’re not supposed to understand everything immediately, but believe (more or
less) that things would come out 1f you went through the steps.

All that aside, this is a subject I want to talk about. It is recent and modern
and would be a perfectly legitimate talk to give at a research seminar. My subject
is the Schrodinger equation in a classical setting—the case of superconductivity.

Ordinarily, the wave function which appears in the Schrodinger equation
applies to only one or two particles. And the wave function itself is not some-
thing that has a classical meaning—unlike the electric field, or the vector potential,
or things of that kind. The wave function for a single particle is a “field”—in
the sense that it is a function of position—but it does not generally have a classical
significance. Nevertheless, there are some situations in which a quantum me-
chanical wave function does have classical significance, and they are the ones I
would like to take up. The peculiar quantum mechanical behavior of matter on
a small scale doesn’t usually make itself felt on a large scale except in the standard
way that it produces Newton’s laws—the laws of the so-called classical mechanics.
But there are certain situations in which the peculiarities of quantum mechanics
can come out in a special way on a large scale.

At low temperatures, when the energy of a system has been reduced very,
very low, instead of a large number of states being involved, only a very, very
small number of states near the ground state are involved. Under those circum-
stances the quantum mechanical character of that ground state can appear on a
macroscopic scale. It is the purpose of this lecture to show a connection between
quantum mechanics and large-scale effects—not the usual discussion of the way
that quantum mechanics reproduces Newtonian mechanics on the average, but a
special situation in which quantum mechanics will produce its own characteristic
effects on a large or “macroscopic” scale.

I will begin by reminding you of some of the properties of the Schrodinger
equation.} I want to describe the behavior of a particle in a magnetic field using
the Schrodinger equation, because the supcrcdnductive phenomena are involved
with magnetic fields. An external magnetic field is described by a vector potential,
and the problem is: what are the laws of quantum mechanics in a vector potential ?
The principle that describes the behavior of quantum mechanics in a vector
potential is very simple. The amplitude that a particle goes from one place to
another along a certain route when there’s a field present is the same as the ampli-

+ I’m not really reminding you, because I haven’t shown you some of these equations
before; but remember the spirit of this seminar.
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a

Fig. 21--1. The amplitude to go from
a to b along the path T' is proportional to

exp (1q/h) f:’A - ds.

tude that it would go along the same route when there’s no field, multiplied by the
exponential of the line integral of the vector potential, times the electric charge
divided by Planck’s constant' (see Fig. 21-1):
o
<b|a>u\ 4= <b[a>‘4=0'exp{£g/ AdS] (211)
It 1s a basic statement of quantum mechanics.
Now without the vector potential the Schrodinger equation of a charged
particle (nonrelativistic, no spin) is

EPRNTETS
75*3“/’—‘2‘,; ' .V ¥+ qdd, (21.2)

where ¢ 1s the electric potential so that g¢ is the potential energy.t Equation (21.1)
1s equivalent to the statement that in a magnetic field the gradients in the Hamilton-
1an are replaced in each case by the gradient minus g4, so that Eq. (21.2) becomes

— W qey = ﬁ(? vV — qA>~<? v - qA>¢+ qev.  (21.3)

This is the Schrodinger equation for a particle with charge ¢ moving in an elec-
tromagnetic field 4, ¢ (nonrelativistic, no spin).

To show that this 1s true I'd like to 1illustrate by a simple example 1n which
mnstead of having a continuous situation we have a line of atoms along the x-axis
with the spacing b and we have an amplitude — KX for an electron to jump from
one atom to another when there is no field.] Now according to Eq. (21.1) if
there’s a vector potential in the x-direction A4,(x, f), the amplitude to jump will
be altered from what 1t was before by a factor exp (1q/hA.b), the exponent being
1g/# times the vector potential integrated from one atom to the next. For simplicity
we will write (g/h)A, = f(x), since 4, will, in general, depend on x. If the ampli-
tude to find the electron at the atom “n” located at x is called C(x) = C,, then
the rate of change of that amplitude is given by the following equation®

_h3 C(x) = EyC(x) — Ke D 0(x 4 b)

1 dt
— KetMO=NDo _ py. (21.4)

There are three pieces. First, there’s some energy E, if the electron 1s located
at x. As usual, that gives the term £,C(x). Next, there is the term — KC(x + b),
which 1s the amplitude for the electron to have jumped backwards one step from
atom “n 4 1,” located at x + b. However, 1n doing so in a vector potential, the
phase of the amplitude must be shifted according to the rule in Eq. (21.1). If 4,
is not changing appreciably 1n one atomic spacing, the integral can be written as
Just the value of 4, at the midpoint, times the spacing b. So (:g/#) times the integral
1s just bf(x + b/2). Since the electron 1s jumping backwards, 1 showed this
phase shift with a minus sign. That gives the second piece. In the same manner
there’s a certain amplitude to have jumped from the other side, but this time we
need the vector potential at a distance (b/2) on the other side of x, times the dis-
tance b. That gives the third piece. The sum gives the equation for the amplitude
to be at x in a vector potential

Now we know that if the function C(x) 1s smooth enough (we take the long
wavelength himit), and if we let the atoms get closer together, Eq. (16 4) will
approach the behavior of an electron 1n free space. So the next step is to expand
both sides of (21.4) in powers of b, assuming b is very small. For example, if b
is zero the right-hand side 1s just (Eo — 2K)C(x). so in the zeroth approximation

1 Volume 11, Section 15-5.

t Not to be confused with our earlier use of ¢ for a state label!

1 K is the same quantity that was called 4 n the problem of a linear lattice with no
magnetic field See Chapter 13.
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the energy is Eg — 2K. Next comes the terms in . But because the two ex-
ponentials have opposite signs, only even powers of b remain. So if you make a
Taylor expansion of C(x), of f(x), and of the exponentials, and then collect the
terms in b%, you get

7 9C(x)
1 ot

= E,C(x) — 2KC(x)
— Kb?*{C"(x) — 2f(x)C'(x) — if'(N)C(x) — fA()C(x)}.  (21.5)

(The “primes” mean differentiation with respect to x.)
Now this horrible combination of things looks quite complicated. But
mathematically it’s exactly the same as

hACKX) _ . B 2[1_. ][i_~ ]
~ 7 = (Eo — 2K)C(x) — Kb I if(x) ix if(x)| C(x). (21.6)
The second bracket operating on C(x) gives C’(x) plus if(x)C(x). The first bracket
operating on these two terms gives the C’’ term and terms in the first derivative
of f(x) and the first derivative of C(x). Now remember that the solutions for zero
magnetic field? represent a particle with an effective mass m.s given by

h

Kb = — .
ST

If you then set £, = —2K, and put back f(x) = (g/h)A., you can easily check
that Eq. (21.6) is the same as the first part of Eq. (21.3). (The origin of the potential
energy term is well known, so I haven’t bothered to include it in this discussion.)
The proposition of Eq. (21.1) that the vector potential changes all the amplitudes
by the exponential factor is the same as the rule that the momentum operator,
(h/i)V gets replaced by

%V—qA,

as you see in the Schrédinger equation of (21.3).

21-2 The equation of continuity for probabilities

Now I turn to a second point. An important part of the Schrodinger equation
for a single particle is the idea that the probability to find the particle at a position
is given by the absolute square of the wave function. It is also characteristic of
the quantum mechanics that probability is conserved in a local sense. When the
probability of finding the electron somewhere decreases, while the probability of
the electron being elsewhere increases (keeping the total probability unchanged),
something must be going on in between. In other words, the electron has a con-
tinuity in the sense that if the probability decreases at one place and builds up
at another place, there must be some kind of flow between. If you put a wall, for
example, in the way, it will have an influence and the probabilities will not be the
same. So the conservation of probability alone is not the complete statement of
the conservation law, just as the conservation of energy alone is not as deep and
important as the local conservation of energy.® If energy is disappearing, there
must be a flow of energy to correspond. In the same way, we would like to find a
“current” of probability such that if there is any change in the probability density
(the probability of being found in a unit volume), it can be considered as coming
from an inflow or an outflow due to some current. This current would be a vector
which could be interpreted this way—the x component would be the net prob-
ability per second and per unit area that a particle passes in the x direction across
a plane parallel to the y-z plane. Passage toward +x is considered a positive
flow, and passage in the opposite direction, a negative flow.

2 Section 13-3.
3 Volume II, Section 27~1.
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Is there such a current? Well, you know that the probability density P(r, f)
is given in terms of the wave function by

P(r, 1) = ¥*(r, ¥Ar, 1). QL7
I am asking: Is there a current J such that

JoP
— == — . b4

EY V- J? (21.8)
If 1 take the time derivative of Eq. (21.7), I get two terms:

P _ .oy
ar EY]

oy*
+ ¢ ¥T3 (21.9)
Now use the Schrodinger equation—Eq. (21.3)—for 8y/d1; and take the complex

conjugate of it to get dy*/dr—each i gets its sign reversed. You get

oP ie 1 (h A
W gr (v =)y = a)y  ewns

1 (£ NE " * (21.10)
\LQE(?V'FQA) <;V+‘IA>¢ ey,
The potential terms and a lot of other stuff cancel out. And it turns out that what
is left can indeed be written as a perfect divergence. The whole equation is equiva-
lent to

L (h
%‘; - ‘V'{m‘”*<7 v — qA>¢ + w(— ’7’ v — qA>¢*’~ QLI

It is really not as complicated as it seems. It is a symmetrical combination of
Y* times a certain operation on ¢, plus y* times the complex conjugate operation
on . It is some quantity plus its own complex conjugate, so the whole thing is
real—as it ought to be. The operation can be remembered this way: it is just the
momentum operator ® minus g4. I could write the current in Eq. (21.8) as

i-1 {[“’_—‘” ¢]*¢ + oy [—‘if;"ﬁ]sp]v 2L12)

m m

There is then a current J which completes Eq. (21.8).

Equation (21.10) shows that the probability is conserved locally. If a particle
disappears from one region it cannot appear in another without something going
on in between. Imagine that the first region is surrounded by a closed surface far
enough out that there is zero probability to find the electron at the surface The
total probability to find the electron somewhere inside the surface is the volume
integral of P. But according to Gauss’s theorem the volume integral of the di-
vergence J is equal to the surface integral of J. If ¢ is zero at the surface, Eq.
(21.10) says that J is zero, so the total probability to find the particle inside can’t
change. Only if some of the probability approaches the boundary can some of it
leak out. We can say that 1t only gets out by moving through the surface—and
that is local conservation.

21-3 Two kinds of momentum

The equation for the current is rather interesting, and sometimes causes a
certain amount of worry. You would think the current would be something like
the density of particles times the velocity. The density should be something like
yy*, which is 0.k. And each term in Eq. (21.12) looks like the typical form for the
average-value of the operator

® — g4
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so maybe we should think of it as the velocity of flow. It looks as though we have
two suggestions for relations of velocity to momentum, because we would also
think that momentum divided by mass, ®/m, should be a velocity. The two possi-
bilities differ by the vector potential.

It happens that these two possibilities were also discovered in classical physics,
when it was found that momentum could be defined in two ways.* One of them
is called “kinematic momentum,” but for absolute clarity I will in this lecture call
it the “mv-momentum.” This 1s the momentum obtained by multiplying mass
by velocity. The other is a more mathematical, more abstract momentum, some-
times called the “dynamical momentum,” which I'll call “p-momentum.” The
two possibilities are

my-momentum = mw, (21.14)
p-momentum = my + gA. (21.15)

It turns out that in quantum mechanics with magnetic fields 1t is the p-momentum
which is connected to the gradient operator ®, so it follows that (21.13) is the
operator of a velocity.

I'd ike to make a brief digression to show you what this is all about—why
there must be something like Eq. (21.15) in the quantum mechanics. The wave
function changes with time according to the Schrodinger equation in Eq. (21.3).
If I would suddenly change the vector potential, the wave function wouldn’t
change at the first instant; only 1ts rate of change changes. Now think of what
would happen in the following circumstance. Suppose I have a long solenoid, in
which I can produce a flux of magnetic field (B-field), as shown in Fig. 21-2. And
there is a charged particle sitting nearby. Suppose this flux nearly instantaneously
builds up from zero to something. I start with zero vector potential and then I
turn on a vector potential. That means that I produce suddenly a circumferential
vector potential 4. You’ll remember that the line integral of 4 around a loop is
the same as the flux of B through the loop.® Now what happens if I suddenly turn
on a vector potential? According to the quantum mechanical equation the sudden
change of 4 does not make a sudden change of y; the wave function is still the
same. So the gradient is also unchanged.

But remember what happens electrically when 1 suddenly turn on a flux.
During the short time that the flux is rising, there’s an electric field generated
whose line integral is the rate of change of the flux with time:

A4
~ 3 (21.16)

That electric field is enormous if the flux is changing rapidly, and it gives a force
on the particle. The force is the charge times the electric field, and so during the
build up of the flux the particle obtains a total impulse (that 1s, a change in mv)
equal to —gA. In other words, if you suddenly turn on a vector potential at a
charge, this charge immediately picks up an “mv” momentum equal to —g4A.
But there 1s something that 1sn’t changed immediately and that’s the difference
between mv and —gA4. And so the sum p = mv + g4 is something which is not
changed when you make a sudden change in the vector potential. This quantity
p 1s what we have called the p-momentum and is of 1mportance in classical me-
chanics in the theory of dynamics, but it also has a direct significance in quantum
mechanics. It depends on the character of the wave function, and it is the one to
be identified with the operator

63=f';v.
1

4 See, for example, J. D Jackson, Classical Electrodynamics, John Wiley and Sons, Inc.
New York (1962), p. 408.
2 Volume II, Chapter 14, Secuion 14-1.

Fig. 21-2. The electric field outside
a solenoid with an increasing current.



21-4 The meaning of the wave function

When Schrodinger first discovered his equation he discovered the conservation
law of Eq. (21.9) as a consequence of his equation. But he imagined incorrectly
that P was the electric charge density of the electron and that J was the electric
current density, so he thought that the electrons interacted with the electromagnetic
field through these charges and currents. When he solved his equations for the
hydrogen atom and calculated ¢, he wasn’t calculating the probability of anything
—there were no amplitudes at that time—the interpretation was completely differ-
ent. The atomic nucleus was stationary but there were currents moving around;
the charges P and currents J would generate electromagnetic fields and the thing
would radiate ight. He soon found on doing a number of problems that it didn’t
work out quite right. It was at this point that Born made an essential contribution
to our ideas regarding quantum mechanics. It was Born who correctly (as far
as we know) interpreted the y of the Schrodinger equation in terms of a probabulity
amplitude—that very difficult 1dea that the square of the amplitude is not the
charge density but 1s only the probability per unit volume of finding an electron
there, and that when you do find the electron some place the entire charge is there.
That whole idea is due to Born.

The wave function ¢(r) for an electron in an atom does not, then, describe
a smeared-out electron with a smooth charge density. The electron is either here,
or there, or somewhere else, but wherever it is, it is a point charge. On the other
hand, think of a situation in which there are an enormous number of particles in
exactly the same state, a very large number of them with exactly the same wave
function. Then what? One of them is here and one of them is there, and the
probability of finding any one of them at a given place is proportional to y¢*.
But since there are so many particles, if I look in any volume dx dy dz I will
generally find a number close to yy* dx dy dz. So in a situation in which y is the
wave function for each of an enormous number of particles which are all in the
same state, y* can be interpreted as the density of particles. If, under these
circumstances, each particle carries the same charge ¢, we can, in fact, go further
and interpret y*¢ as the density of electricity. Normally, yy* is given the dimen-
stons of a probability density, then ¢ should be multiplied by ¢ to give the dimen-
sions of a charge density. For our present purposes we can put this constant
factor into ¢, and take yy* itself as the electric charge density. With this under-
standing, J (the current of probability 1 have calculated) becomes directly the
electric current density.

So in the situation in which we can have very many particles in exactly the
same state, there is possible a new physical interpretation of the wave functions.
The charge density and the electric current can be calculated directly from the
wave functions and the wave functions take on a physical meaning which extends
into classical, macroscopic situations.

Something similar can happen with neutral particles. When we have the
wave function of a single photon, it 1s the amplitude to find a photon somewhere.
Although we haven’t ever written it down there is an equation for the photon wave
function analogous to the Schrodinger equation for the electron. The photon
equation is just the same as Maxwell’s equations for the electromagnetic field,
and the wave function is the same as the vector potential 4. The wave function
turns out to be just the vector potential. The quantum physics is the same thing
as the classical physics because photons are noninteracting Bose particles and
many of them can be in the same state—as you know, they /ike to be in the same
state. The moment that you have billions in the same state (that is, in the same
electromagnetic wave), you can measure the wave function, which 1s the vector
potential, directly. Of course, 1t worked historically the other way. The first ob-
servations were on situations with many photons in the same state, and so we were
able to discover the correct equation for a single photon by observing directly
with our hands on a macroscopic level the nature of wave function.

Now the trouble with the electron is that you cannot put more than one in
the same state. Therefore, it was long believed that the wave function of the
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Schrodinger equation would never have a macroscopic representation analogous
to the macroscopic representation of the amplitude for photons. On the other
hand, it is now realized that the phenomena of superconductivity presents us with
just this situation.

21-5 Superconductivity

As you know, very many metals become superconducting below a certain
temperature "—the temperature is different for different metals. When you reduce
the temperature sufficiently the metals conduct electricity without any resistance
This phenomenon has been observed for a very large number of metals but not for
all, and the theory of this phenomenon has caused a great deal of difficulty. It
took a very long time to understand what was going on nside of superconductors,
and 1 will only describe enough of it for our present purposes. It turns out that
due to the interactions of the electrons with the vibrations of the atoms in the
lattice, there is a small net effective artraction between the electrons. The result
is that the electrons form together, if 1 may speak very qualitatively and crudely,
bound pairs.

Now you know that a single electron is a Fermi particle. But a bound pair
would act as a Bose particle, because if I exchange both electrons in a pair I change
the sign of the wave function twice, and that means that I don’t change anything.
A pair is a Bose particle.

The energy of pairring—that is, the net attraction—is very, very weak. Only
a tiny temperature 1s needed to throw the electrons apart by thermal agitation,
and convert them back to “normal” electrons. But when you make the tempera-
ture sufficiently low that they have to do their very best to get into the absolutely
lowest state ; then they do collect in pairs.

I don’t wish you to imagine that the pairs are really held together very closely
like a point particle. As a matter of fact, one of the great difficulties of under-
standing this phenomena originally was that that is not the way things are. The
two electrons which form the pair are really spread over a considerable distance;
and the mean distance between pairs 1s relatively smaller than the size of a single
pair. Several pairs are occupying the same space at the same time. Both the reason
why electrons 1n a metal form pairs and an estimate of the energy given up in
forming a pair have been a triumph of recent times. This fundamental point in the
theory of superconductivity was first explained in the theory of Bardeen, Cooper,
and Schrieffer,” but that 1s not the subject of this seminar. We will accept, however,
the idea that the electrons do, in some manner or other, work in pairs, that we
can think of these pairs as behaving more or less like particles, and that we can
therefore talk about the wave function for a “pair.”

Now the Schrodinger equation for the pair will be more or less like Eq. (21.3).
There will be one difference in that the charge g will be twice the charge of an elec-
tron. Also, we don’t know the inertia—or effective mass—for the pair in the crystal
lattice, so we don’t know what number to put in for m. Nor should we think that
if we go to very high frequencies (or short wavelengths), this 1s exactly the right
form, because the kinetic energy that corresponds to very rapidly varying wave
functions may be so great as to break up the pairs. At finite temperatures there
are always a few pairs which are broken up according to the usual Boltzmann
theory. The probability that a pair is broken is proportional to exp (— E,a.r/kT).
The electrons that are not bound in pairs are called “normal” electrons and will
move around in the crystal in the ordinary way. I will, however, consider only
the situation at essentially zero temperature—or, in any case, I will disregard the
complications produced by those electrons which are not in pairs.

% First discovered by Onnes in 1911; H. K. Onnes, Comm. Phys. Lab , Univ. Leyden,
Nos. 119, 120, 122 (1911). You will find a nice up-to-date discussion of the subject in
E. A. Lynton, Superconductivity, John Wiley and Sons, Inc., New York, 1962.

7 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).



Since electron pairs are bosons, when there are a lot of them in a given state
there is an especially large amplitude for other pairs to go to the same state. So
nearly all of the pairs will be locked down at the lowest energy 1n exactly the same
state—1t won’t be easy to get one of them into another state. There’s more ampl-
tude to go into the same state than into an unoccupied state by the famous factor
\/n, where n is the occupancy of the lowest state. So we would expect all the pairs
to be moving in the same state.

What then will our theory look like? I'll call ¢ the wave function of a pair
in the lowest energy state. However, since yy¢* is going to be proportional to the
charge density p, I can just as well write ¢ as the square root of the charge density
times some phase factor:

Ur) = p(r)e’®, (21.17)

where p and 6 are real functions of r. (Any complex function can, of course, be
written this way.) It’s clear what we mean when we talk about the charge density,
but what 1s the physical meaning of the phase 8 of the wave function? Well, let’s
see what happens if we substitute y(r) into Eq. (21.12), and express the current
density in terms of these new variables p and 6. It’s just a change of variables and
I won’t go through all the algebra, but it comes out

_ A q ) .
J~E<v0—%A o Q1.18)

Since both the current density and the charge density have a direct physical meaning
for the superconducting electron gas, both p and 6 are real things. The phase is
just as observable as p; it is a piece of the current density J. The absolute phase is
not observable, but if the gradient of the phase is known everywhere, the phase is
known except for a constant. You can define the phase at one point, and then the
phase everywhere is determined.

Incidentally, the equation for the current can be analyzed a little nicer, when
you think that the current density J is in fact the charge density times the velocity
of motion of the fluid of electrons, or pv. Equation (21.18) is then equivalent to

my = hve — gA. (21.19)

Notice that there are two pieces in the my-momentum; one is a contribution from
the vector potential, and the other, a contribution from the behavior of the
wave function. In other words, the quantity # V8 is just what we have called the
p-momentum,

21-6 The Meissner effect

Now we can describe some of the phenomena of superconductivity. First,
there is no electrical resistance. There’s no resistance because all the electrons are
collectively in the same state. In the ordinary flow of current you knock one
electron or the other out of the regular flow, gradually deteriorating the general
momentum. But here to get one electron away from what all the others are doing
is very hard because of the tendency of all Bose particles to go in the same state.
A current once started, just keeps on going forever.

It’s also easy to understand that if you have a piece of metal in the super-
conducting state and turn on a magnetic field which isn’t too strong (we won’t
go into the details of how strong), the magnetic field can’t penetrate the metal. If, as
you build up the magnetic field, any of it were to build up inside the metal, there
would be a rate of change of flux which would produce an electric field, and an
electric field would immediately generate a current which, by Lenz’s law, would
oppose the flux. Since all the electrons will move together, an infinitesimal electric
field will generate enough current to oppose completely any applied magnetic field.
So if you turn the field on after you've cooled a metal to the superconducting state,
it will be excluded.
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Even more interesting is a related phenomenon discovered experimentally
by Meissner.® If you have a piece of the metal at a high temperature (so that it is a
normal conductor) and establish a magnetic field through it, and then you lower
the temperature below the critical temperature (where the metal becomes a super-
conductor), the field is expelled. In other words, it starts up its own current—and
in just the right amount to push the field out.

We can see the reason for that in the equations, and 1'd like to explain how.
Suppose that we take a piece of superconducting material which is in one lump.
Then in a steady situation of any kind the divergence of the current must be zero
because there’s no place for it to go. It is convenient to choose to make the
divergence of 4 equal to zero. (I should explain why choosing this convention
doesn’t mean any loss of generality, but I don’t want to take the time.) Taking
the divergence of Eq. (21.18), then gives that the Laplacian of 6 is equal to zero.
One moment. What about the varnation of p? 1 forgot to mention an important
point. There is a background of positive charge in this metal due to the atomic
ions of the lattice. If the charge density p is uniform there is no net charge and no
electric field. If there would be any accumulation of electrons in one region the
charge wouldn’t be neutralized and there would be a terrific repulsion pushing the
electrons apart.f So in ordinary circumstances the charge density of the electrons
in the superconductor is almost perfectly uniform—I can take p as a constant.
Now the only way that V2§ can be zero everywhere inside the lump of metal is
for 6 to be a constant. And that means that there is no contribution to J from
p-momentum. Equation (21.18) then says that the current is proportional 1o p
times 4. So everywhere in a lump of superconducting material the current is
necessarily proportional to the vector potential:

J=—p % A (21.20)

Since p and ¢ have the same (negative) sign, and since p is a constant, I can set
pg/m = —(some constant); then

J = —(some constant)4. (21.21)

This equation was originally proposed by London and London? to explain the
experimental observations of superconductivity—long before the quantum me-
chanical origin of the effect was understood.

Now we can use Eq. (21.20) in the equations of electromagnetism to solve
for the fields. The vector potential is related to the current density by

V24 = — ?lcz 7 (1.22)

If I use Eq. (21.21) for J, I have

V24 = \%4, (21.23)
where A% 1s just a new constant;
A =p eogch' (21.24)

We can now try to solve this equation for 4 and see what happens in detail.
For example, in one dimension Eq. (21.23) has exponential solutions of the form
e™* and e*™* These solutions mean that the vector potential must decrease
exponentially as you go from the surface into the material. (It can’t increase

8 W. Meissner and R. Ochsenfeld, Naturwiss. 21, 787 (1933).

9 H. London and F. London, Proc. Roy. Soc (London) A149, 71 (1935); Physica 2,
341 (1935).

1 Actually if the electric field were too strong, pairs would be broken up and the
“normal” electrons created would move 1n to help neutralize any excess of positive charge.
Still, it takes energy to make these normal electrons, so the main point 1s that a nearly
uniform density p 1s highly favored energetically.
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(@)

(b)

Fig 21-3  (a) A superconducting cyl-
inder 1s a magnetic field; (b) the magnetic
field B as a function of r.

because there would be a blow up.) If the piece of metal is very large compared
to 1/X, the field only penetrates to a thin layer at the surface—a layer about 1/\
in thickness. The entire remainder of the interior 1s free of field, as sketched in
Fig. 21-3. This is the explanation of the Meissner effect.

How big 1s the distance \? Well, remember that r,, the “electromagnetic
radius” of the electron (2.8 X 10~'%cm), is given by

Writing p as g.N, where N 1s the number of electrons per cubic centimeter, we have
A2 = 87Nrq. (21.25)

For a metal such as lead there are about 3 X 102% atoms per cm®, so 1f each one
contributed only one conduction electron, 1/\ would be about 2 X 10™°cm.
That gives you the order of magnitude

21-7 Flux quantization

The London equation (21.21) was proposed to account for the observed
facts of superconductivity including the Meissner effect. In recent times, however,
there have been some even more dramatic predictions. One prediction made by
London was so peculiar that nobody paid much attenfion to it until recently.
I will now discuss it. This time instead of taking a single lump, suppose we take
a ring whose thickness is large compared to 1/), and try to see what would happen
if we started with a magnetic field through the ring, then cooled it to the super-
conducting state, and afterward removed the original source of B. The sequence of
events 1s sketched in Fig 21-4. In the normal state there will be a field in the body
of the ring as sketched in part (a) of the figure. When the ring is made super-
conducting, the field 1s forced outside of the marerial (as we have just seen).
There will then be some flux through the hole of the ring as sketched in part (b).
If the external field is now removed, the lines of field going through the hole are
“trapped” as shown in part (c). The flux & through the center can’t decrease
because d®/dr must be equal to the line integral of E around the ring, which 1s
zero in a superconductor. As the external field is removed a super current starts
flowing around the ring to keep the flux through the ring a constant. (It’s the
old eddy-current idea, only with zero resistance.) These currents will, however,
all flow near the surface (down to a depth 1/}), as can be shown by the same kind
of analysis that I made for the solid block. These currents can keep the magnetic
field out of the body of the ring, and produce the permanently trapped magnetic
field as well.

Now, however, there 1s an essential difference, and our equations predict a
surprising effect. The argument I made above that 6 must be a constant in a solid
block does not apply for a ring, as you can see from the following arguments.

Well inside the body of the ring the current density J 1s zero; so Eq. (21.18)
gives

AvVEe = gA. (21.26)

Now consider what we get if we take the line integral of 4 around a curve T,
which goes around the ring near the center of its cross-section so that it never
gets near the surface, as drawn in Fig. 21-5. From Eq. (21.26),

h%ve-ds = q%A'(/s (21.27)
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Now you know that the line integral of A around any loop is equal to the flux
of B through the loop
f-A - ds
Equation (21.27) the becomes
f v - ds

The line integral of a gradient from one point to another (say from point I to point
2) is the difference of the values of the function at the two points. Namely,

I
&

8. (21.28)

Il
e

2
/ Ve-ds=02-01.
1

If we let the two end points 1 and 2 come together to make a closed loop you might
at first think that 6, would equal 6,, so that the integral in Eq. (21.28) would be
zero. That would be true for a closed loop in a simply-connected piece of super-
conductor, but it is not necessarily true for a ring-shaped piece. The only physical
requirement we can make is that there can be only one value of the wave function
Jfor each point. Whatever 6 does as you go around the ring, when you get back to
the starting point the 6 you get must give the same value for the wave function

V= \/’—)ezﬁ'

This will happen if 6 changes by 2mn, where n is any integer. So if we make one
complete turn around the ring the left-hand side of Eq. (21.27) must be # - 27n.
Using Eq. (21.28), I get that

2mwnh = q®. (21.29)

The trapped flux must always be an integer times 27h/q! If you would think of the
ring as a classical object with an ideally perfect (that is, infinite) conductivity,
you would think that whatever flux was initially found through it would just stay
there—any amount of flux at all could be trapped. But the quantum-mechanical
theory of superconductivity says that the flux can be zero, or 27h/q, or 4rh/q,
or 67h/q, and so on, but no value in between. It must be a multiple of a basic
quantum mechanical unit.

London!? predicted that the flux trapped by a superconducting ring would
be quantized and said that the possible values of the flux would be given by Eq.
(21.29) with g equal to the electronic charge. According to London the basic
unit of flux should be 27#/g., which is about 4 X 10~7 gauss = cm2. To visual-
ize such a flux, think of a tiny cylinder a tenth of a millimeter in diameter; the
magnetic field inside it when it contains this amount of flux is about one percent
of the earth’s magnetic field. It should be possible to observe such a flux by a
sensitive magnetic measurement.

In 1961 such a quantized flux was looked for and found by Deaver and
Fairbank!! at Stanford University and at about the same time by Doll and
Nabauer'2 in Germany.

In the experiment of Deaver and Fairbank, a tiny cylinder of superconductor
was made by electroplating a thin layer of tin on a one-centimeter length of No.
56 (1.3 X 1072 cm diameter) copper wire. The tin becomes superconducting
below 3.8°K, while the copper remains a normal metal. The wire was put in a
small controlled magnetic field, and the temperature reduced until the tin became
superconducting. Then the exeternal source of field was removed. You would

10 F. London, Superfluids; John Wiley and Sons, Inc., New York, 1950, Vol. I, p. 152
11 B, S. Deaver, Jr., and W. M. Fairbank, Phys. Rev. Letters 7, 43 (1961).
12 R. Doll and M. Nabauer, Phys. Rev. Lefters 1, 51 (1961).
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Fig. 21-4. A ring in a magretic
field: (a) in the normal state; (b) in the
superconducting state; (c) after the ex-
ternal field is removed.

Fig. 21-5. The curve T inside o
superconducting ring




expect this to generate a current by Lenz’s law so that the flux inside would not
change. The little cylinder should now have magnetic moment proportional to the
flux inside. The magnetic moment was measured by jiggling the wire up and down
(like the needle on a sewing machine, but at the rate of 100 cycles per second)
inside a pair of little coils at the ends of the tin cylinder. The induced voltage in
the coils was then a measure of the magnetic moment.

When the experiment was done by Deaver and Fairbank, they found that the
flux was quantized, but that the basic unit was only one-half as large as London
had predicted. Doll and Nabauer got the same result. At first this was quite mys-
terious,t but we now understand why it should be so. According to the Bardeen,
Cooper, and Schrieffer theory of superconductivity, the g which appears in Eq.
(21.29) is the charge of a pair of electrons and so is equal to 2g,. The basic flux
unit is

wh -7
Py = ’ = 2 X 1077 gauss-cm (21.30)
or one-half the amount predicted by London. Everything, now fits together, and
the measurements show the existence of the predicted purely quantum-mechanical
effect on a large scale.

21-8 The dynamics of superconductivity

The Meissner effect and the flux quantization are two confirmations of our
general ideas. Just for the sake of completeness I would like to show you what
the complete equations of a superconducting fluid would be from this point of
view—it is rather interesting. Up to this point I have only put the expression for
¥ into equations for charge density and current. If I put it into the complete
Schrodinger equation I get equations for p and 6. It should be interesting to see
what develops, because here we have a “fluid” of electron pairs with a charge
density p and a mysterious /—we can try to see what kind of equations we get for
such a “fluid”! So we substitute the wave function of Eq. (21.17) into the Schrd-
dinger equation (21.3) and remember that p and 6 are real functions of x, y, and
z. If we separate real and imaginary parts we obtain then two equations. To
write them in a shorter form I will—following Eq. (21.19)—write

LA PR A, (21.31)
m m

One of the equations I get is then

dp _
27 = Vv - pv. (21.32)
Since pv is first J, this is just the continuity equation once more. The other equation

I obtain tells how 8 varies; it is

8 m s L .
ho=— 50 +q¢—27"{;/l-)V(\/;)} (21.33)

Those who are thoroughly familiar with hydrodynamics (of which I'm sure few
of you are) will recognize this as the equation of motion for an electrically charged
fluid if we identify %6 as the ‘“‘velocity potential”—except that the last term, which
should be the energy of compression of the fluid, has a rather strange dependence
on the density p. In any case, the equation says that rate of change of the quantity
#6 is given by a kinetic energy term, 3mv?, plus a potential energy term, g¢, with
an additional term, containing the factor 42, which we could call a *“‘quantum
mechanical energy.” We have seen that inside a superconductor p 1s kept very

1 It has once been suggested by Onsager that this might happen (see F. London, Ref.
10), although no one else ever understood why.
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uniform by the electrostatic forces, so this term can almost certainly be neglected
in every practical application provided we have only one superconducting region.
If we have a boundary between two superconductors {or other circumstances in
which the value of p may change rapidly) this term can become important.

For those who are not so familiar with the equations of hydrodynamuics,
I can rewnite Eq. (21.33) in a form that makes the physics more apparent by using
Eq. (21.31) to express # in terms of v. Taking the gradient of the whole of Eq.
(21.33) and expressing V6 in terms of 4 and v by using (21.31), I get

w4 _ o) _ v 2 (Lwp).
3 = m AV~ v X (VXv)— WX VW Vo NG Vp
(21.34)
What does this equation mean? First, remember that
A4
—V¢ — 5 = E. (21.35)

Next, notice that if I take the curl of Eq. (21.19), I get

V><v=—;%V><A, (21.36)

since the curl of a gradient is always zero. But V X A is the magnetic field B,
so the first two terms can be written as

%(E+UXB).

Finally, you should understand that ov/d¢ stands for the rate of change of the
velocity of the fluid at a point. If you concentrate on a particular particle, its
acceleration is the fotal derivative of v (or, as it 1s sometimes called in fluid dy-
namics, the “comoving acceleration”), which is related to dv/dr by*?

dv
dt

= ‘;—‘t’ + @ VW (21.37)

comoving
This extra term also appears as the third term on the right side of Eq. (21.25).
Taking it to the left side, I can write Eq. (21.25) in the following way:

d?
dt

_ h2<l 2 /o
=g(E+vXB)— V- %V\/p- (21.38)

comoving 2
We also have from Eq. (21.36) that

vxv=—-218 (21.39)
m

These two equations are the equations of motion of the superconducting
electron fluid. The first equation is just Newton’s law for a charged fiuid in an
electromagnetic field. It says that the acceleration of each particle of the fluid
whose charge is ¢ comes from the ordinary Lorentz force g(E + v X B) plus an
additional force, which is the gradient of some mystical quantum mechanical
potential—a force which 1s not very big except at the junction between two super-
conductors. The second equation says that the fluid 1s “ideal”—the curl of v has
zero divergence (the divergence of B is always zero). That means that the velocity
can be expressed in terms of velocity potential. Ordinarily one writes that v X
v = O for an ideal fluid, but for an ideal charged fluud in a magnetic field, this gets
modified 1o Eq. (21.40).

So, Schrodinger’s equation for the electron pairs in a superconductor gives
us the equations of motion of an electrically charged ideal fluid. Superconductivity
is the same as the problem of the hydrodynamics of a charged liquid. If you want

13 See Volume II, Section 40-2.
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1/

SUPERCONDUGTOR

Fig. 21-6. Two superconductors sep-
arated by a thin insulator.

to solve any problem about superconductors you take these equations for the
fluid [or the equivalent pair, Egs. (21.32) and (21.33)], and combine them with
Maxwell’s equations to get the fields. (The charges and currents you use to get
the fields must, of course, include the ones from the superconductor as well as
from the external sources.)

Incidentally, I believe that Eq. (21.38) is not quite correct, but ought to have
an additional term involving the density. This new term does not depend on
quantum mechanics, but comes from the ordinary energy associated with varia-
tions of density. Just as in an ordinary fluid there should be a potential energy
density proportional to the square of the deviation of p from pg, the undisturbed
density (which is, here, also equal to the charge density of the crystal lattice).
Since there will be forces proportional to the gradient of this energy, there should
be another term in Eq. (21.38) of the form: (const) V(o — po)2. This term did
not appear from the analysis because it comes from the interactions between parti-
cles, which I neglected in using an independent-particle approximation. It i,
however, just the force I referred to when I made the qualitative statement that
electrostatic forces would tend to keep p nearly constant inside a superconductor.

21-9 The Josephson junction

1 would like to discuss next a very interesting situation that was noticed by
Josephson ' while analyzing what might happen at a junction between two super-
conductors. Suppose we have two superconductors which are connected by a
thin layer of insulating material as in Fig. 21-6. Such an arrangement is now
called a “Josephson junction.” If the insulating layer is thick, the electrons can’t
get through; but if the layer is thin enough, there can be an appreciable quantum
mechanical amplitude for electrons to jump across. This is just another example
of the quantum-mechanical penetration of a barrier. Josephson analyzed this
situation and discovered that a number of strange phenomenon should occur.

In order to analyze such a junction I'll call the amplitude to find an electron
on one side, ¥, and the amplitude to find it on the other, Y,. In the superconduct-
ing state the wave function, ¥ is the common wave function of all the electrons
on one side, and ¢ is the corresponding function on the other side. 1 could do
this problem for different kinds of superconductors, but let us take a very simple
situation in which the material is the same on both sides so that the junction is
symmetrical and simple. Also, for a moment let there be no magnetic field. Then
the two amplitudes should be related in the following way:

i 20— U+ Kb,
i % = Uy + Ky1.

The constant K is a characteristic of the junction. If K were zero, these two
equations would just describe the lowest energy state—with energy U—of each
superconductor. But there is coupling between the two sides by the amplitude K
that there may be leakage from one side to the other. (It is just the “flip-flop”
amplitude of a two-state system.) If the two sides are identical, U; would equal
U, and I could just subtract them off. But now suppose that we connect the two
superconducting regions to the two terminals of a battery so that there is a po-
tential difference V across the junction. Then U; — U, = gV. 1 can, for con-
venience, define the zero of energy to be halfway between, then the two equations
are

., 0
i =yt Ky,
(21.40)
LW qV
ih i 7302 + Ky,.

14 B, D. Josephson, Physics Letrers 1, 251 (1962).
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These are the standard equations for two quantum mechanical states coupled
together. This time, let’s analyze these equations in another way. Let’s make the

substitutions
V1 = Vpe, 2141
‘IJZ =V pZsz! .

where ¢, and 8, are the phases on the two sides of the junction and p, and p,
are the density of electrons at those two points. Remember that in actual practice
p1 and p, are almost exactly the same and are equal to pg, the normal density of
electrons in the superconducting material. Now if you substitute these equations
for ¥ and ¥ into (21.40), you get four equations by equating the real and imaginary
parts in each case. Letting (8> — 6;) = 8§, for short, the result is

2 .
+ 7 K+/p2py sin §,

p1 =
(21.42)
2 .
p2 = — 3 KV papysin 3,
6, = +§1 22 cos s —%’
p1 (21.43)
_ 4 K Jo 4
92—+—,; p—2COSB+27'
The first two equations say that g; = —pe. “But,” you say, “they must

both be zero 1f p; and p, are both constant and equal to zero.” Not quite. These
equations are not the whole story. They say what g, and g, would be if there
were no extra electric forces due to an unbalance between the electron fluid and
the background of positive ions. They tell how the densities would start to change,
and therefore describe the kind of current that would begin to flow. This current
from side 1 to side 2 would be just g;(or —g3), or

J = .255 /P13 sin 5. (21.44)

Such a current would soon charge up side 2, except that we have forgotten that
the two sides are connected by wires to the battery. The current that flows will
not charge up region 2 (or discharge region 1) because currents will flow to keep
the potential constant. These currents from the battery have not been included
in our equations. When they are included, p; and p, do not in fact change, but
the current across the junction is still given by Eq. (21.44).

Since p; and p, do remain constant and equal to py, let’s set 2Kpo/h = Jy,

and write
J = Jpsin 6. (21.45)

Jo, like K, is then a number which is a characteristic of the particular junction.
The other pair of equations (21.43) tells us about 8, and 6. We are interested
in the difference 8 = 6, — 6, to use Eq. (21.45); what we get is

b =0, — 6, = %/ (21.46)
That means that we can write
8(1) = o0 + % f V() dt, (21.47)

where 8 is the value of 8 at 1 = 0. Remember also that g is the charge of a pair,
namely, ¢ = 2¢.. In Eqgs. (21.45) and (21.47) we have an important result, the
general theory of the Josephson junction.
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Now what are the consequences? First, put on a dc voltage. If you put ona
dc voltage, V, the argument of the sine becomes (8o + (g/#)V 1) Since #is a
small number (compared to ordinary voltage and times), the sine oscillates rather
rapidly and the net current is nothing. (In practice, since the temperature 1s not
zero, you would get a small current due to the conduction by “normal” electrons.)
On the other hand if you have zero voltage across the junction, you can get a cur-
rent! With no voltage the current can be any amount between +4-J, and —J,
(depending on the value of §,). But try to put a voltage across 1t and the current
goes to zero. This strange behavior has recently been observed experimentally, '3

There is another way of getting a current—by applying a voltage at a very
high frequency in addition to a dc voltage. Let

V="V,+ vcoswt,
where v << V. Then 8(2) 1s

) + % V(jf + g i—;sin wl.

Now for Ax small,
sin (x + Ax) ~ sin x 4+ Axcos X.

Using this approximatton for sin §, 1 get
- : 9 a2 4 .
J=Jo [sm (60 + 5 Vot> + 3 o sin wt cos (6(, + 5 Vm)]

The first term is zero on the average, but the second term is not tf

There should be a current if the ac voltage has just this frequency. Shapiro®
claims to have observed such a resonance effect.

If you look up papers on the subject you will find that they often write the
formula for the current as

J = J() sin (5() + g% /A . ds)a (2148)

where the integral is to be taken across the junction. The reason for this 1s that
when there’s a vector potential across the junction the flip-flop amplitude is
modified in phase in the way that we explained earlier If you chase that extra
phase through, it comes out as given above.

Finally, I would like to describe a very dramatic and interesting experiment
which has recently been made on the interference of the currents from each of
two junctions. In quantum mechanics we’re used to the interference between
amplitudes from two different shits. Now we’re going to do the interference be-
tween two junctions caused by the difference in the phase of the arrival of the
currents through two different paths. In Fig. 21-7, I show two different junctions,
“a” and “b”, connected in parallel. The ends, P and Q, are connected to our elec-
trical intruments which measure any current flow. The external current, Jiota1,
will be the sum of the currents through the two junctions. Let J, and J,, be the
currents through the two junctions, and let their phases be 3, and 8,. Now the
phase difference of the wave functions between P and Q must be the same whether
you go on one route or the other. Along the route through junction “a”, the phase
difference between P and Q is 8, plus the line integral of the vector potential along
the upper route:

APhasep g = 6, + ¢ A ds. (21.49)

h upper

15 P, W. Anderson and J. M. Rowell, Phys Rev Letters 10, 230 (1963).
16 S, Shapiro, Phys. Rev. Letters 11, 80 (1963).
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Why? Because the phase 6 1s related to 4 by Eq. (21.26). If you integrate that
equation along some path, the left-hand side gives the phase change, which 1s then
just proportional to the Iine integral of A, as we have written here. The phase
change along the lower route can be written similarly

APhasep_q = oy + 2de /1 A-ds. (21.50)

These two must be equal; and if 1 subtract them I get that the difference of the
deltas must be the line integral of A around the circuit:

_ 24
oy — Bn = —h— 1‘14 ds.
Here the 1ntegral is around the closed loop T’ of Fig. 21-7 which circles through
both junctions. The integral over A4 is the magnetic flux ¢ through the loop. So
the two &’s are going to differ by 2¢./# times the magnetic flux & which passes
between the two branches of the circuit:

29,
B — b = Sl @ (21.51)
1 dan control this phase difference by changing the magnetic field on the circuit,
so I can adjust the differences in phases and see whether or not the total current
that flows through the two junctions shows any interference of the two parts.
The total current will be the sum of J, and Ji,. For convenience, I will write

b=t +%a, 5 =8 —Te

Then,
Jiotal = Jo {sm (60 + % <1>) + sin (60 — % <I>)}

Jo i 8o cos ‘-’;i”~ (21.52)

Now we don’t know anything about §,, and nature can adjust that anyway
she wants depending on the circumstances. In particular, it will depend on the
external voltage we apply to the junction. No matter what we do, however, siné,,
can never get bigger than 1. So the maximum current for any given ® 1s given by

g2
#

This maximum current will vary with ® and will 1tself have maxima whenever

cos

Jumx = JO

o=,
qe
with # some integer. That is to say that the current takes on its maximum values
where the flux linkage has just those quantized values we found in Eq. (21.30)'
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Fig. 21-8. A recording of the current
through a pair of Josephson junctions as a
function of the magnetic field in the region
between the two junctions (see Fig. 21-7).
[This recording was provided by R. C.
Jaklevic, J. Lambe, A. H. Silver, and J. E.
Mercereau of the Scientific Laboratory,
Ford Motor Company ]
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The Josephson current through a double junction was recently measured'”
as a function of the magnetic field in the area between the junctions. The results
are shown in Fig. 21-8. There 1s a general background of current from various
effects we have neglected, but the rapid oscillations of the current with changes in
the magnetic field are due to the interference term cos g.®/% of Eq. (21.52).

One of the intriguing questions about quantum mechanics is the question of
whether the vector potential exists 1n a place where there's no field.!® This experi-
ment I have just described has also been done with a tiny solenoid between the
two junctions so that the only significant magnetic B field is inside the solenoid
and a negligible amount 1s on the superconducting wires themselves. Yet it is
reported that the amount of current depends oscillatorily on the flux of magnetic
field 1nside that solenoid even though that field never touches the wires—another
demonstration of the *“‘physical reality” of the vector potential.!?

I don’t know what will come next. But look what can be done. First, notice
that the interference between two junctions can be used to make a sensitive mag-
netometer. If a pair of junctions is made with an enclosed area of, say, 1 mm?,
the maxima in the curve of Fig. 21-8 would be separated by 2 X 107" gauss. It
1s certainly possible to tell when you are 1/10 of the way between two peaks; so
it should be possible to use such a junction to measure magnetic fields as small as
2 X 1077 gauss—or to measure larger fields to such a precision. One should be
able to go even farther. Suppose for example we put a set of 10 or 20 junctions
close together and equally spaced. Then we can have the interference between
10 or 20 shits and as we change the magnetic field we will get very sharp maxima
and minima. Instead of a 2-shit interference we can have a 20- or perhaps even a
100-slit interferometer for measuring the magnetic field. Perhaps we can predict
that the measurement of magnetic fields will—by using the effects of quantum-
mechanical interference—eventually become almost as precise as the measurement
of wavelength of light.

These then are some illustrations of things that are happening in modern
times—the transistor, the laser, and now these junctions, whose ultimate practical
applications are still not known. The quantum mechanics which was discovered
1n 1926 has had nearly 40 years of development, and rather suddenly 1t has begun
to be exploited in many practical and real ways. We are really getting control of
nature on a very delicate and beautiful level.

I am sorry to say, gentlemen, that to participate in this adventure 1t is ab-
solutely imperative that you learn quantum mechanics as soon as possible. It was
our hope that in this course we would find a way to make comprehensible to you
at the earliest possible moment the mysteries of this part of physics

17 Jaklevic, Lambe, Silver, and Mercereau, Phys. Rev Letrers 12, 159 (1964).
18 Jaklevic, Lambe, Silva, and Mercereau, Phys Rev. Letters 12, 274 (1964).
19 See Volume 11, Chapter 15, Section 15-5.

21-18



Feynman’s Epilogue

Well, I've been talking to you for two years and now I'm going to quit. In
some ways I would like to apologize, and other ways not. I hope—in fact, I know—
that two or three dozen of you have been able to follow everything with great
excitement, and have had a good time with it. But I also know that “the powers of
mstruction are of very little efficacy except in those happy circumstances in which
they are practically superfluous.” So, for the two or three dozen who have under-
stood everything, may I say I have done nothing but shown you the things. For
the others, if I have made you hate the subject, I'm sorry. I never taught elementary
physics before, and I apologize. I just hope that I haven’t caused a serious trouble
to you, and that you do not leave this exciting business. I hope that someone else
can teach it to you in a way that doesn’t give you indigestion, and that you will
find someday that, after all, it isn’t as horrible as it looks.

Finally, may I add that the main purpose of my teaching has not been to
prepare you for some examination—it was not even to prepare you to serve in-
dustry or the military. I wanted most to give you some appreciation of the wonder-
ful world and the physicist’s way of looking at it, which, I believe, is a major part
of the true culture of modern times. (There are probably professors of other sub-
jects who would object, but I believe that they are completely wrong.)

Perhaps you will not only have some appreciation of this culture; it is even
possible that you may want to join in the greatest adventure that the human mind
has ever begun.
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