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1 Measurement and expectation values

Last time we discussed how useful it is to work in the basenefgy eigenstates because of their connection
with time evolution:

Hye = Ege = {ye},{E}

SinceH is a hermitian operator we know that this can be orthonormal. Time evolution imebtay:

Wt =0) >= a|Pe, > +ao|Uk, > +aa|Pe, > +--- = [P(t) >= e Myt =0) >

So let’s discuss measurement. |#f >= a1 |Yg, > +az|Pe, > +ag|Pe, > +---, What is the result of a
measurement of energy? One of the postulate of QM is that the result of #ureenent must be an
eigenvalue ofl. @ will collapse onto one of these eigenstates with some probability. What's thelpitity
of obtainingEz? Ps = | < We| > |2 = a% And what isy after measurement is projected ta/s; upon an
observation oE3. So, measurement is a random collapse onto one of the eig. states of ¢ineables you
are measuring!

The same holds for momentum: If we are discussing momentum then it's best to work with momentum
eigenstates.

PYp = pYp = {Wp}.{p}

Supposgy >= by|Pp, > +ba|YPp, > +bz|YPp, > +--- What is a result of a measurement of momentum?
We will end up measuring an eigenvalue of momentum with some probability, andthlapse onto that
eigenstateR = |by|?).

The exact same thing happens for the observahlés étc. The eigenstates of these observables define
bases, and measurement of that observable randomly collapses us@witltose eigenstates.

Question: What if we take an ensemble of identically prepared states and measuaeth@lysical quantity
for each? How do we determine (theoretically) the average value of thauneeaants? This will lead us to
the definition of arexpectation value.

Example: ENERGY. Suppose we know stafgs }, {E}. If an ensemble is prepared iy >= |@g > then
the situation is simplex E >= Ep. But what if we prepare an ensemble in a stgte> in a superposition
state which is not an eigenstatetdf e.g. | >= aq |k, > +ao|Pe, > +az|Pe, > +---? Whatis< E >
then?

< E >= E;Prob|E;] + EoProb[E;] + EsProb[Es] + - --
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whereProblE] is just

Prob[E] = | < Yg | > [2 = |ai|2

This yields:

< E >= |&y|?E1 + |ag|?E2 + |ag|?E3+ - - -

Our shorthand for this is given by:

<E>=<yH|Y >

which is known as the expgctation value of the Hamiltonian (or equivalentlyecétiergy). You can readily
show that this< E >=< (/|H |y > yields the proper expression.

We can do this foany observable! Consider arbitra[y observalleThe average value of this quantity for
ensemble of systems preparedgn> is < A>=< Y|A|Y >.

It should be noted that it is sometimes hard to evaluate the expectation vakegh®acontinuous basis for
example [x >). Supposeap(x) =< x| >= Ae. What is the average value of measured momentum for
an ensemble of systems?

< Pp>=<y|plYy >= /_Z Y (X) Py (X)dx = /_Z (A*e”@) (?%) (Aefxz) dx=0

So, in this instance the expectation value is zero. It is left as an exercisaltme< p? > and see iit is
zero!

2 Spin
2.1 Physical qubits

Now, after this foray into the world of wave mechanics, let's get back todmgussion ofjubits (it is in
the title of the course, after all!). How can we make a qubit in real life? Wel meguantum mechanical
two-level system such that we can:

(1) Initialize the qubit.
(2) Manipulate the qubit (think gates!)
(3) Measure the qubit.

There are many other important issues such as docoherence andamtartgbut I'll mainly be focusing
on the first three.

Examples of some possible 2-level systems are spins, atoms, photonss &ise(such as quantum dots,
superconducting loops, etc.), but I'll focus on these examples. Oserekt few lectures we'll be discussing
how to physically prepare, measure, and manipulate real qubit systems.
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In order to manipulate qubit, we must manipulate its state:

|y >=a|0>+B|1>
As you've already seen in abstract sense, this occurs by acting onwith unitary operators (i.e. gates)
such that

Ulg >=a’|0>+B'|1>

whereU is a 2x 2 matrix.

2.2 The Bloch Sphere

A very nice way to think of these quantities is via the "Bloch Sphere.” This isra@nient mapping for all
possible single-qubit states:

= |15

Figure 1:

0 and ¢ are the usual spherical coordinates. Every point on the spheresegis a possible qubit. All
possible qubits (within an overall multiplicative phase factor) can be thoofjas vectors on this unit
sphere. A vector on the Bloch Sphere represents this qubit:

Y >= cosg|0 > +ei<"sing|1 >

The action of a "gate” can be thought of as a rotation on the Bloch Spbet’s.take the Hadamard galte
that has been discussed in the past. (Notekhiatnot equal to the Hamiltonian in this case!)

1 1
HO>=—|0>+—|1>
| ﬁ' fz’
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Given our generalized expression for a quantum state on the Blochedphe-= cos% |0> +€? n§|1 >),
we see that the action of the Hadamard gate is to rotate the qufiabyut the y-axis:

1§ 7§ (o) T 1 1
R (§> 0>=cos/|0> +e'<°)snz\0 >= ﬁ|O> +ﬁ|l >=H|0>

But you might ask where the stat@> and|1 > and Unitary Transformationis actually come from? The
answer is that0 > and|1 > are the quantum eigenstates of real systemdaadses from time evolution
via the application of a Hamiltoniatd (t) = e ™M'/P if H is applied for timet. The Hamiltonian transforms
| > in the following way:

So, to understand qubits we must understand the quantum levels of ysalglisystems and what happens
to them when they are acted upon by the Hamiltoran

The first physical quantum system that we will investigat&HEN. We will spend a bunch of time on spin,
since all other qubit systems can be mapped onto an effective spin system.

Figure 2:
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2.3 What is spin?

Elementary particles and composite particles carry an intrinsic angular momeatled spin. For our
purposes, the mostimportant particles are electrons and protons. ckheossiain a little angular momentum
vector that can point up{> or down| | >. The quantum mechanical spin state of an electron or proton is
thus|y >= a| 1> +B| |>. Therefore, spins can be used as qubits With= [0 >, | | >= |1 >.

How do we understand the details of spin? The history of the developmspirofs an interesting one. The
"discovery” of spin is largely credited to Uhlenbeck and Gondsmit who, 9851 introduced it to explain
the behavior of hydrogen atoms in a magnetic field:
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This can be explained if an electron hasiattinsic magnetic momenfl since a magnetic moment in a
magnetic fieldB has an energf = —[i - B. In the context of QM, new energy levels come fr@neither
parallel or anti-parallel t@.

But where doegl come from, and how do we explain its QM behavior?
The simplest explanation is “Classical”: Classicallycomes from a loop of current.

T3 By

e veuplotion
Lfﬂé‘at‘vd’

The energyE = —[i - B comes fromi x B force of current in a B-field (Lorentz force). The lowest energy,
and thereby the place where "the system wants to go”, is obtained when gmetitamoment and B-field
line up.

If an isolated electron has “intrinsiqt then the simplest explanation for this is that electron spins about
some axis. this is independent of orbital motion in atom, just like the Earth’s™apiout the north pole is
independent of its orbit around sun.

fe{“" %I‘/’ﬂ-\,

Sincefl is associated with “spinning” charge, then we can wjiite terms of angular momentum. Anything
that spins has angular momentum!
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The simplest way to see this is classically for a spinning charge. Angular mioméngiven byl = x p=
rx nmv. L =mwr for a charge of mass mmoving in a a circle with velocity= v. The magnetic moment
can be obtained as follows:

U = (current) (Area) =

L.I('D

Butl = 2T, so

Now comes the tricky parfThe electron is not actually spinning about some axis! It only acts as though it
is. Electrons are point particles which, as far as we know, have nd”isizke traditional sense. Therefore
ther in the previous discussion of spinning charge is not meaningful.ifithieisic angular momentum of
an electron has nothing to do with "orbital” motion, but it does lead to an intriisiThis is a relativistic
effect that can be derived from the Dirac Equation (Relativistic Schgaat equation for spir%— particles),
but it holds for electrons that are not moving fast.

This intrinsic angular momentum is called “spin'S:
Classically:ti = — =
_ %3

Quantum Mechanlcallyﬁ =—5

What isg? g is called the g-factor and it is a unitless correction factor due to QM. Fotrefesg ~ 2. For
protonsg~ 5.6. You should also note th% ~ 2000, so we conclude throton < Helectron-

So, to understand behavior of electron’s intrinsic magnetic moménthich is an observable we can mea-
sure) then we must understand the behavior of its intrinsic angular momentnirhis is why spin is
important. Since the electron is sma&lmust be described by QM.

To understand spin S we must first understand the QM properties of angular momentum. Classically,
angular momentum i€ = F x p = Ly + Lyj 4 L,k wherei.j, k are the usual cartesian unit vectors. To un-
derstand angular momentum in QM, we turn the classical observablespertiorsand study the “algebra”

of L=Fx pin QM.

Again, and we can't stress this enough, electron spin is not orbitall@ngwmentum in the classical
sense. Experlments tell us, however, that we can take any genemarme we derive for the QM operator
L=Fxp=Lyi+ Lyj + L,k we can simply apply to the operatBe= S,i —I—Sy] +S,k. This is the standard

treatment.

Now | will quote some properties that are straightforward to derivelfer ¥ x P, and | will apply them
directly to the operato®. (I will skip the derivations, but they are done in standard texts and wikteas
HW assignment.)

There are really four important operators associated with ﬁnsj S, F= SX +Sy +SZ All spin
properties are determined by the commutators between these operators [Ae%H: AB—BA):

(S0 =1hS, [, 8] = iRS =[S, 5] = RS, [F,§] =
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What are the implications of these commutation relations? First notic&Sths), andS, don’t commute
with each other. Following the results of the last lecture, we conclude thaawnmeot find a simultaneous
eigenstate of any pair of these quantities.

This is strange! We can’t know precise valueégafands} for any state. This is just likep'andx. Math-
gmatically we can state by saying that there is no g&te, > such thatS|s,,s, >= s(|sx, sy > AND
Sls0sy >=gyls0, sy >.

Kind of a bummer. However, notice th&§% commutes with any one componentﬁf Therefore, wecan

know the precise value & and§ for only one component d. Following standard convention, let’s pick
S = S We can find spin statds,m > that are simultaneous eigenstateSoandsS,.

&ls,;m>=as|s,;m>,§|s,m>= bg|s,m >, as, by = constants

To understand “spin”, we must understand spin eigenstgt@s>. First, what are allowed values af, by,?
These are eigenvalues of operators representing observablésu€hpthis is very important since they are
what you measure! We'll explore these eigenvalues and eigenstatesiexiiecture.
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