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1 Measurement and expectation values
Last time we discussed how useful it is to work in the basis ofenergy eigenstates because of their connection
with time evolution:

ĤψE = EψE ⇒{ψE},{E}

SinceĤ is a hermitian operator we know that this can be orthonormal. Time evolution is obtained by:

|ψ(t = 0) >= a1|ψE1 > +a2|ψE2 > +a3|ψE3 > + · · · ⇒ |ψ(t) >= e−iĤt/h̄|ψ(t = 0) >

So let’s discuss measurement. If|ψ >= a1|ψE1 > +a2|ψE2 > +a3|ψE3 > + · · · , what is the result of a
measurement of energy? One of the postulate of QM is that the result of the measurement must be an
eigenvalue ofĤ. ψ will collapse onto one of these eigenstates with some probability. What’s the probability
of obtainingE3? P3 = | < ψe|ψ > |2 = a2

3 And what isψ after measurement?ψ is projected toψ3 upon an
observation ofE3. So, measurement is a random collapse onto one of the eig. states of the observable you
are measuring!

The same holds for momentum: If we are discussing momentum then it’s best to work with momentum
eigenstates.

p̂ψp = pψp ⇒{ψp},{p}

Suppose|ψ >= b1|ψp1 > +b2|ψp2 > +b3|ψp3 > + · · · What is a result of a measurement of momentum?
We will end up measuring an eigenvalue of momentum with some probability, and then collapse onto that
eigenstate (P2 = |b2|2).

The exact same thing happens for the observables ˆx, L̂, etc. The eigenstates of these observables define
bases, and measurement of that observable randomly collapses us onto one of those eigenstates.

Question: What if we take an ensemble of identically prepared states and measure the same physical quantity
for each? How do we determine (theoretically) the average value of the measurements? This will lead us to
the definition of anexpectation value.

Example: ENERGY. Suppose we know states{ψE}, {E}. If an ensemble is prepared in|ψ >= |ψE > then
the situation is simple:< E >= E0. But what if we prepare an ensemble in a state|ψ > in a superposition
state which is not an eigenstate ofĤ, e.g. |ψ >= a1|ψE1 > +a2|ψE2 > +a3|ψE3 > + · · ·? What is< E >
then?

< E >= E1Prob[E1]+E2Prob[E1]+E3Prob[E3]+ · · ·
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whereProb[Ei] is just

Prob[Ei] = | < ψEi |ψ > |2 = |ai|2

This yields:

< E >= |a1|2E1 + |a2|2E2 + |a3|2E3 + · · ·

Our shorthand for this is given by:

< E >=< ψ |Ĥ|ψ >

which is known as the expectation value of the Hamiltonian (or equivalently of the energy). You can readily
show that this< E >=< ψ |Ĥ|ψ > yields the proper expression.

We can do this forany observable! Consider arbitrary observableÂ. The average value of this quantity for
ensemble of systems prepared in|ψ > is < A >=< ψ |Â|ψ >.

It should be noted that it is sometimes hard to evaluate the expectation value. Take the continuous basis for
example (|x >). Supposeψ(x) =< x|ψ >= Ae−x2

. What is the average value of measured momentum for
an ensemble of systems?

< p̂ >=< ψ | p̂|ψ >=
∫ ∞

−∞
ψ∗(x)p̂ψ(x)dx =

∫ ∞

−∞

(

A∗e−x2
)

(

h̄
i

∂
∂x

)

(

Ae−x2
)

dx = 0

So, in this instance the expectation value is zero. It is left as an exercise to evaluate< p2 > and see ifit is
zero!

2 Spin
2.1 Physical qubits
Now, after this foray into the world of wave mechanics, let’s get back to ourdiscussion ofqubits (it is in
the title of the course, after all!). How can we make a qubit in real life? We need a quantum mechanical
two-level system such that we can:

(1) Initialize the qubit.

(2) Manipulate the qubit (think gates!)

(3) Measure the qubit.

There are many other important issues such as docoherence and entanglement, but I’ll mainly be focusing
on the first three.

Examples of some possible 2-level systems are spins, atoms, photons. Others exist (such as quantum dots,
superconducting loops, etc.), but I’ll focus on these examples. Over the next few lectures we’ll be discussing
how to physically prepare, measure, and manipulate real qubit systems.

C/CS/Phys 191, Spring 2005, Lecture 9 2



In order to manipulate qubit, we must manipulate its state:

|ψ >= α |0 > +β |1 >

As you’ve already seen in abstract sense, this occurs by acting on|ψ > with unitary operators (i.e. gates)
such that

Û |ψ >= α ′|0 > +β ′|1 >

whereÛ is a 2×2 matrix.

2.2 The Bloch Sphere
A very nice way to think of these quantities is via the ”Bloch Sphere.” This is a convenient mapping for all
possible single-qubit states:

Figure 1:

θ andφ are the usual spherical coordinates. Every point on the sphere represents a possible qubit. All
possible qubits (within an overall multiplicative phase factor) can be thoughtof as vectors on this unit
sphere. A vector on the Bloch Sphere represents this qubit:

|ψ >= cos
θ
2
|0 > +eiφ sin

θ
2
|1 >

The action of a ”gate” can be thought of as a rotation on the Bloch Sphere.Let’s take the Hadamard gateH
that has been discussed in the past. (Note thatH is not equal to the Hamiltonian in this case!)

H|0 >=
1√
2
|0 > +

1√
2
|1 >
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Given our generalized expression for a quantum state on the Bloch sphere (|ψ >= cos θ
2 |0> +eiφ sin θ

2 |1>),
we see that the action of the Hadamard gate is to rotate the qubit byπ

2 about the y-axis:

Ry

(π
2

)

|0 >= cos
π
4
|0 > +ei(0)sin

π
4
|0 >=

1√
2
|0 > +

1√
2
|1 >= H|0 >

But you might ask where the states|0 > and|1 > and Unitary TransformationŝU actually come from? The
answer is that|0 > and|1 > are the quantum eigenstates of real systems andÛ arises from time evolution
via the application of a Hamiltonian:̂U(t) = e−iĤt/h̄, if Ĥ is applied for timet. The Hamiltonian transforms
|ψ > in the following way:

|ψ ′ >= e−iĤt/h̄|ψ >

So, to understand qubits we must understand the quantum levels of real physical systems and what happens
to them when they are acted upon by the HamiltonianĤ.

The first physical quantum system that we will investigate isSPIN. We will spend a bunch of time on spin,
since all other qubit systems can be mapped onto an effective spin system.

Figure 2:
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2.3 What is spin?
Elementary particles and composite particles carry an intrinsic angular momentumcalled spin. For our
purposes, the most important particles are electrons and protons. The each contain a little angular momentum
vector that can point up| ↑> or down| ↓>. The quantum mechanical spin state of an electron or proton is
thus|ψ >= α| ↑> +β | ↓>. Therefore, spins can be used as qubits with| ↑>= |0 >, | ↓>= |1 >.

How do we understand the details of spin? The history of the development ofspin is an interesting one. The
”discovery” of spin is largely credited to Uhlenbeck and Gondsmit who, in 1925, introduced it to explain
the behavior of hydrogen atoms in a magnetic field:

This can be explained if an electron has anintrinsic magnetic moment~µ since a magnetic moment in a
magnetic field~B has an energyE = −~µ ·~B. In the context of QM, new energy levels come from~µ either
parallel or anti-parallel to~B.

But where does~µ come from, and how do we explain its QM behavior?

The simplest explanation is “Classical”: Classically,~µ comes from a loop of current.

The energyE = −~µ ·~B comes from~I ×~B force of current in a B-field (Lorentz force). The lowest energy,
and thereby the place where ”the system wants to go”, is obtained when the magnetic moment and B-field
line up.

If an isolated electron has “intrinsic”~µ then the simplest explanation for this is that electron spins about
some axis. this is independent of orbital motion in atom, just like the Earth’s ”spin” about the north pole is
independent of its orbit around sun.

Since~µ is associated with “spinning” charge, then we can write~µ in terms of angular momentum. Anything
that spins has angular momentum!
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The simplest way to see this is classically for a spinning charge. Angular momentum is given by~L =~r×~p =
~r×m~v. L = mvr for a charge of mass= m moving in a a circle with velocity= v. The magnetic moment
can be obtained as follows:

µ = (current)(Area) =
e
J
·πr2

But I = 2πr
v , so

µ =
e
2
· vr =

e
2
· L

m
⇒~µ = − e

2m
~L

Now comes the tricky part.The electron is not actually spinning about some axis! It only acts as though it
is. Electrons are point particles which, as far as we know, have no ”size” in the traditional sense. Therefore
the r in the previous discussion of spinning charge is not meaningful. Theintrinsic angular momentum of
an electron has nothing to do with ”orbital” motion, but it does lead to an intrinsic~µ. This is a relativistic
effect that can be derived from the Dirac Equation (Relativistic Schrodinger equation for spin-12 particles),
but it holds for electrons that are not moving fast.

This intrinsic angular momentum is called “spin” =~S.

Classically:~µ = − e
2m

~L

Quantum Mechanically:~µ = − ge
2m

~S

What isg? g is called the g-factor and it is a unitless correction factor due to QM. For electrons,g ≈ 2. For
protons,g ≈ 5.6. You should also note thatmproton

melectron
≈ 2000, so we conclude that~µproton ≪ ~µelectron.

So, to understand behavior of electron’s intrinsic magnetic moment~µ (which is an observable we can mea-
sure) then we must understand the behavior of its intrinsic angular momentum =~S. This is why spin is
important. Since the electron is small,~S must be described by QM.

To understand spin =~S we must first understand the QM properties of angular momentum. Classically,
angular momentum is~L =~r×~p = L̂xi + L̂ yj + L̂ zk wherei, j ,k are the usual cartesian unit vectors. To un-
derstand angular momentum in QM, we turn the classical observables intooperators and study the “algebra”
of~L =~r×~p in QM.

Again, and we can’t stress this enough, electron spin is not orbital angular momentum in the classical
sense. Experiments tell us, however, that we can take any general properties we derive for the QM operator
~L =~r×~p = L̂xi + L̂ yj + L̂ zk we can simply apply to the operator~S = ~Sxi + S̃yj + S̃zk. This is the standard
treatment.

Now I will quote some properties that are straightforward to derive for~L =~r × P̂, and I will apply them
directly to the operator~S. (I will skip the derivations, but they are done in standard texts and will beleft as
HW assignment.)

There are really four important operators associated with spin:Ŝx, Ŝy, Ŝz, ~S2 = Ŝx
2
+ Ŝy

2
+ Ŝz

2
. All spin

properties are determined by the commutators between these operators (recall[Â, B̂] = ÂB̂− B̂Â):

[Ŝx, Ŝy] = ih̄Ŝz, [Ŝy, Ŝz] = ih̄Ŝx = [Ŝz, Ŝx] = ih̄Ŝy, [Ŝ
2, Ŝi] = 0
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What are the implications of these commutation relations? First notice thatŜx, Ŝy, andŜz don’t commute
with each other. Following the results of the last lecture, we conclude that wecannot find a simultaneous
eigenstate of any pair of these quantities.

This is strange! We can’t know precise values ofŜx and Ŝy for any state. This is just like ˆp and x̂. Math-
ematically we can state by saying that there is no state|sx,sy > such thatŜx|sx,sy >= sx|sx,sy > AND
Ŝy|sx,sy >= sy|sx,sy >.

Kind of a bummer. However, notice thatŜ2 commutes with any one component of~S. Therefore, wecan
know the precise value of~S2 andŜi for only one component of~S. Following standard convention, let’s pick
Si = Sz. We can find spin states|s,m > that are simultaneous eigenstates of~S2 andŜz.

Ŝ2|s,m >= as|s,m >, Ŝi|s,m >= bs|s,m >,as,bm = constants

To understand “spin”, we must understand spin eigenstates|s,m >. First, what are allowed values ofas, bm?
These are eigenvalues of operators representing observables. Obviously this is very important since they are
what you measure! We’ll explore these eigenvalues and eigenstates in thenext lecture.
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