C/CS/PhyS 191 Sch. Equation, Particle in a BOX, Commutators 2/10/05
Fall 2003 Lecture 8

| Schrodinger equation (continued)

1.1 Energy eigenstates

Last time we saw that the Schr. Equation determines how the wave functigpecfiele develops in time:

0 —R? 92
Iﬁaw(x,t) = %WW(XJ)

This can be rewritten as:

0 -
Iﬁﬁm(xvt) = HQU(Xat)

—R2 §2

2m gx2*

This is not something that can really be derived. This is a postulate. It'steagtpoint. We can try to justify

it and show that it makes sense and is reasonable, but we can't ilefeehaps the strongest justification is
that it explains experiments. It correctly explains the world around us régular physics class we'd spend
a lot of time talking about all those experiments, and how they’re explain€ahby

whereH is an energy operatdt =

But this is not a regular physics class. This class is called "Qubits, QM Camdputers,” so the most
important point for us here is that this equation describes the behaviarbisgthe elements that carry
guantum information. Understanding this equation will help us to manipulate cuit€reate quantum
gates.

The first thing to note is that there is a special relationship in QM between #rgyenf a system and its
time developmentA Trick: The Sch. equation can be broken into two pieces if we wpit@s a product:
Y(x,t) = P(X)@(t). This is calledseparation of variables. This gives us:

HY(x) = Eg(x)

(p(t) _ e—iEt/ﬁ

H i (x) = Exyi(x) is a condition that must be satisfied to find the stétag that well-defined energ{/Ex}.
It's an eigenfunction equation. (Time dependence is egigy;t) = Y(X)@(t) = Y (x)e'E/N)

=
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But what does "well-defined” energy mean? It means two things: (1) #& gtdas well-defined energy if

Hy = Cy where "C” = energy of state. (2) A statg has well defined energy if an ensemble (read, many
cppies) of systems all prepared in the statgive the same answer if you measure energy (i.e. E="C" if
HyY =EY).

Consider, for example, two statgs and s, such thatd g = E1y» andH @ = Ex. We also required that

E; # E», which in quantum mechanical language means thagitjesval ues are non-degenerate. Suppose

| take 1@ qubits prepared in statg; and measure their energy and make a histogram. What does the
histogram look like? See Figure 1(a).

Now suppose that | prepare élqubits in the statg)’ = \/gwl + \/gtpz, measureheir energies, and make
a histogram. How does it look? See Figure 1(b)
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Figure 1: Histograms of particle energy measurements.

Ask yourself, isy)/ a state with well-defined energy®0. Why not?(/’ is not an eigenstate of the Hamilto-
nian operator. Let's check this:

n ~ 3 2 3 2
Hy' =H (\/;lllﬁr \/%Wz) = \/;Elll—’lJr\/;Ezlllz

Does this equal (constantfy/)? No, because as stateg andE, are not equal. Thereforg’ is not an
eigenstate of the energy operator and has no well-defined energy.

1.2 Time dependence

So how do these states change in time? Supgdset = 0) = (1 (x) whereHyy = E;gi(x). What is
Wxt+0)?

Pxt) = ga(x)e =N
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Butwhatif y(x,t =0) = ¢/ = \/gllll + \/ng? What'sy(x,t # 0) in this case?

Each piece of the wavefunction with well-defined energy dances to its owndittlenmer. It spins at
frequency [ its energy.

But what if | give youy(x,t = 0) = f(x) wheref(x) is an arbitrary function? What ig/(x,t # 0) in this
case? This strategy is the same. You must sblyg(x) = Exyi(x) to get the eigenstatdspi} and their
associated energidgy}. Then, you expres$(x) as f(x) = agr(X) + axa(X) + ags(x) + - -+, a linear
superposition of the energy eigenstafgs }. Note that you must find the overlag: =< (| f > for this to
be meaningful. In position space, this is accomplished by the integral:

<wilt>= [ B xfdx

The time dependence is then given by

Wx,t) = argn (x)e BN L apy(x)e BN 1 ags(x)e By

So time dependence in QM is easy if you know {ly& }'s. The set{ ¢} forms a special basis. If you write
Y in this base then time dependence is easy!

This is often called the basis of stationary states. Why? Becauge=ify(x) whereH i = Ejy; then
PY(x,t) = g (x)e 'BYN. The probability density(x,t) is then given by

Pxt) =[x 012 = (@(9e =) (gr(e =) = |gi (2

Therefore the time dependence for the probability density dropped estrdit change in time.

Let's do an example now! Let's consider a situation where we want to useléc&ons inside atoms as
qubits. How do we describe the physical details of these qubits? Whatearallbwed energies? How do
they change in timeWhat do we do??? We solve the Schr. equation, that's what.

As is the case in most QM problems, we must find the HamiltoRiahl in this case is the energy operator
for an electron in an atom. To know this then we must make some assumptioidhravaeiectrons behave
in an atom.

Let's assume that atoms are very tiny 10 1° meter) 1-D boxes with very hard walls. The walls are

located at positiox = 0 andx = |. This model works surprisingly well. Inside the bbkis given by the
free particle Hamiltoniaml = —%g—;. Outside the box we model the very hard walls as points where the

potential energy V- «. This has the effect afisallowing any ¢ to be nonzero in this region. If it did
exist in this region its energy (obtained, as always, by applying the Hamiftpniauld also go to infinity.
That’s too much energy for our little electrons, so we can say that we witicesur wavefunctionsp(x)
to functions which vanish at< 0 andx > |.
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Wx=0) = P(x=1)=0

Strictly speaking, we mean thgt(x < 0) = ¢(x > 1) = 0. We will see that this will allow us to construct
wavefunctions which are not normalized over all spaee{—o, o} but instead are normalized over our
restricted box spacec {0,1}. The system as we've described it can be sketched is sketched in Bigure

V(x) = infinity V(x) = infinity
forx <0 forx>L

particle never here particle lives in here particle never here
wavefunction - 0 forx < 0 wavefunction - 0 wavefunction = 0 forx < 0

Figure 2: Particle in a box

The first thing to note is that we've done this problem before! For a feetigle we know that we have

solutionsye (x) = A€ + Be ™™ with energiesEy = % Are we done? No, because we need to impose

our boundary condition that/(x = 0) = ¢(x =1) = 0 since those walls are hard and do not allow particles
to exist outside of the free particle box we've constructed.

Our previous solutionye (x) = A¢® + Be~'* is fine, but we can also write another general solution as
follows:

Ye (X) = Csin(kx) 4+ D cogkx)

As we will see, this is a convenient choice. If we know impose our firshdaty conditions:

Ye(x=0) =0=_Csink(x=0)]+Dcogk(x=0)] =C(0)+D(1) =D

SoD = 0 and we can forget about the cosine solution. The second bounafzgition tells us:

Ye(x=1)=0=Csin(kl) =0

This is satisfied for alkl = nrt, wheren is an integer. Therefore, we hakg = %T which gives us our
guantized eigenfunction set. The energy eigenvalues are

. _%_ﬁznzn2
"Tom 2m

with eigenfunctions
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Un(X) = Csinnl—nx

Are we done? No, because we must normalize.

! ! nm 2
— 24y — 202 _ _
<‘~/Jn\’~l’n >_/O ‘wn(x)‘ dx—1:>\/oc sIin (l—X>dX—:|.:>C:—\/Ij

So normalization has given us our proper set of energy eigenfunaihsigenvalues:

2 . h2n?m
s = Fin () 0= T

Higher energy states have more nodes. Some of the wavefunctions sketbieed as follows:

V(x) = infinity V(x) = infinity
forx <0 forx > L

A A

n-3

Figure 3: The first three eigenfunctions of the particle in a box system.

What does this have to do with the discrete quantum state picture as desoribeatontext of qubits? To
obtain a qubit from this system, we can construct our standard [fasisand |1 > by just restricting our
state space to the bottom two eigenstates:

2. /T 22
10>= \[TS‘”(T)()’EO_W

2. [(2nm AR% P
15—/ Zsn(x) B = 2L
1> \ﬂs'”< | X)’ L= omez
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Physically this would mean forcing the total energy of the system to be lesEthareaning that the particle
could never have any overlap withy for k > 2.

Suppose, as we have in the past, that the state of the electron qukit is 0) >= %|O > +\%‘1 >. What
is the state at # 0?

[W(t) >= % <\/I§sin (7|—Tx)> o Bt/ % <\/I§Sm <2|_7T )) o Bt/

2 Other eigenbases

Now, the previous discussion was carried out in the "energy” basisytigh we mean we sought the
eigenstates of the Hamiltonian and expressed our quantum states in thaasigeifhis is, of course, very
convenient for describing the time development of the state. But sometimasightiwant to write a qubit
state in terms of the eigenstates of a different physical quantity.

For example, you might want to describe the wavefunction of your qubirmg®f basis states that have
well-defined position, or momentum, or angular momentum. Each of these lzasbs found by solving
a corresponding eigenvalue problem. In order to get these "well-difgtates you just have to know the
operators and solve the eigenvalue problem.

HOWEVER: While you can always construct an eigenstatephysical quantity, you might not be able to
construct a state that is a simultaneous eigenstate of two physical quantitiastate that has well-defined
values for two observables.

Question: Is it possible to construct a staj , such thai p(X) = Xo,p(X) AND Pl p(X) = Pk p(X)?
Such a state would have simultaneously well-defined posikgrahd momentum).

3 Commutators

A relevant theorem to help answer the question:

Theorem: Consider two operatdkaindB (representing two physical quantities). It is possible to construct a
simultaneous eigenstatgs,,, of bothA andB iff [A, B] = 0 where|A BJAB — BA is the commutator between
AandB.

Proof (kind of): One can easily show that[/K B] = 0 then simultaneous eigenstates exist. SUPR@sEis

a set of non-degenerate elgenstatesa A, = a@,. Now conS|de|B(A(pa) = a(B%) But, BA = AB from

the commutator, s&(Bg,) = a(B%) So we conclude thaBg,) is an eigenstate af with eigenvalue &
So,Be, O ¢ which means thaBg, = bg,. Thereforeg, is a simultaneous elgenstate/bandB

So, to answer the question of whether we can construct a state of weledgfosition AND momentum,
then we must see [R, p] = 0 or not.

First, what isp?? We know from before that

A_f)Z_ RZ 92 B 202 2(92 )
H= o= amae = P = M= p=sat-fos =5

h

Let's test this operatop = (,i on an test state:
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W(x) = 1.2 (&%) = Ake™™ = pyi(x)

x

Since we are working in the continuous basis- wherex'= x (meaning the position operator is jube
function x), we can check the commutator in this basis:

R o
| =2
[X’ i dx} '

Notice the commutator is itself an operator, in this case one that is begging &te@pearsome function.
Let's apply it to a test functiorf (x) and see what happens:

ho h/ o 0 h/of 0 h/ of of :
[X,Ta—x} f(x) = T (x&— ax ) f(x) = T <XE - E((xf(x))) =7 (x& — f(x) —XR) =ihf(x)
We see the test functiof(x) is irrelevant and we can state that
[%.pl =i#£0

Therefore we can conclude that you cannot simultaneously know thigopand momentum of a quantum
state with certainty. This is a restatement of the Heisenberg Uncertainty Reinsipg a different language.
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