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Operators

In lecture 3 we defined the operatorP = |ν〉〈ν | which projects an arbitrary state onto the state|ν〉. Now for
an orthonormal basis{| j〉} we can define the set of projection operatorsPj = | j〉〈 j| which obey the so-called
“completeness relation”∑k

j=1Pj = ∑ j | j〉〈 j| = 1.

A linear operator maps states (kets) onto linear combinations of other states (kets). Suppose a ket|b〉 is
mapped to a ket|a〉: the operator for this is denoted by the outer product|a〉〈b|. So the action of linear
operators can easily be written in our bra-ket language, e.g.,

X|ψ〉 = |a〉〈b|ψ〉
Y|ψ〉 = |c〉〈d|ψ〉

XY|ψ〉 = |a〉〈b|c〉〈d|ψ〉.

If one these kets is a superposition of states, e.g.,|a〉 = α|0〉+β |1〉, then the resulting state is also a super-
position, i.e.,

X|ψ〉 = (〈b|ψ〉α)|0〉+(〈b|ψ〉β )|1〉.

So the bra-ket notation is naturally suited to the linear nature of quantum mechanical operators.

The inner product in the center of the last equation is a number, so clearly the “product”XY is also an
operator. We often denote operators by the notationX̂. Note that the order of these operators matters:
applyingX̂Ŷ to |ψ〉 results in a state proportional to|a〉, while applyingŶX̂ results in a state proportional to
|c〉.
Now lets consider how to express an operator that acts on states in a Hilbert space spanned by an orthonor-
mal set| j〉. We can write the operator in terms of its action on these basis states, by making use of the
completeness relation:

X̂| j〉 = Î X̂| j〉
= ∑

j ′
| j ′〉〈 j ′|X̂| j〉

= ∑
j ′

Xj ′ j | j ′〉,

whereXj ′ j is the j ′ jth element of the matrix representing the linear action ofX̂ on the basis. Furthermore,

X̂ = Î X̂Î

= ∑
j, j ′
| j〉〈 j|X̂| j ′〉〈‘ j ′|

= ∑
j, j ′

Xj j ′ | j〉〈 j ′|.
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The diagonal matrix elementXj j is often referred to as the “expectation value” ofX̂ on state| j〉.
An important global characteristic of operators is their trace:

TrX̂ = ∑
j

Xj j .

For finite dimensional spaces the trace is easy to evaluate and is easily seen to be independent of basis (hint:
insert the unit operator in above equation).

From now on we will drop the “̂X” notation, unless essential to avoid misunderstanding, and simply refer to
the operator asX.

A general operatorA has a number of related operators that have their analogs in matrix algebra. The
operator transposeAT is defined by

AT = ∑
j j ′
| j〉〈 j ′|A| j〉〈 j ′|

and the operator complex conjugateA∗ by

A∗ = ∑
j j ′
| j〉〈 j|A| j ′〉∗〈 j ′|

If A = AT , thenA is a symmetric operator, while ifA =−AT it is skew-symmetric. A very important related
operator is the Hermitian adjoint

A† = (A∗)T = ∑ j j ′| j〉〈 j ′|A j〉∗〈 j ′|

If A = A†, thenA is Hermitian.

Hermitian operators are essential to quantum mechanics. A basic postulate of quantum mechanics is that
physically meaningful entities of classical mechanics, such as momentum, energy, position, etc., are repre-
sented by Hermitian operators. Dirac called these entities “observables”. Hermitian operators have some
useful properties that again have their analog in matrix algebra. Thus, starting from the basic definition of
Hermitian adjoint

〈k|A|k′〉∗ = 〈k′|A†|k〉

which means that if

A|ψ〉 = |ψ ′〉

that

〈ψ ′| = 〈ψ|A†,

one can easily show that

(BA)† = A†B†.

Now if bothA andB are Hermitian operators,A†B† = BA, whence

(BA)† = AB.
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For this product operator to be also Hermitian, we requireAB= BAand this is only true ifA andB commute.
This commutation property is so important in quantum mechanics that we define a special notation for it.
The commutator of two operators is defined as the operator

C = AB−BA= [A,B]

and the operatorsA andB commute ifC = [A,B] = 0. Note that this result implies that if the commutator
[A,B] 6= 0 andA,B are both observables, then the productAB is not an observable. We say that “A andB are
incompatible observables”.

Eigenvalues/Eigenvectors

Since linear operators can be represented by matrices (on finite dimensional complex vector spaces), all the
relevant properties of such matrices follow also for operators. Thus,

• any single Hermitian operatorA can be diagonalized by a unitary transformation

U†AU = a,

whereai j = aδi j .

• elements of the diagonalized form are real eigenvaluesa1,a2, ...ad whered is the dimension of the
complex vector space. They may be degenerate, i.e., several having the same value. The set{ai} is
called the “spectrum” of̂A.

• the eigenvalues are the roots of the secular equation

det(A−aI) = 0,

i.e., the roots of an algebraic equation of degreed.

• the basis vectors|1〉, |2〉, ...|d〉 that diagonalizeA are the eigenvectors (eigenkets) and satisfy

A|n〉 = an|n〉.

Hence we may writeA in terms of its eigenvectors/eigenvalues as

A = ∑
n
|n〉an〈n|.

This is known as the spectral decomposition of A.

• eigenvectors with different eigenvalues are orthogonal.

• If Ai , i = 1,2, ...K is a set of commuting Hermitian operators, i.e.,

[Ai ,A j ] = 0

then one can simultaneously diagonalize the operators with the same unitary transformation. The
eigenvalues area(i)

n and the eigenvectors satisfy

{Ai −a(i)
n }|a(1)

n a(2)
n ...a(K)

n 〉 = 0

where the ket is labelled by all of its eigenvalues.
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• If A,B are Hermitian and do not commute, they cannot be simultaneously diagonalized.

Hermitian operators and unitary evolution

We saw before (lecture 4) that time evolution of quantum systems is unitary. Now again from matrix algebra
we know that unitary matrices are related to Hermitian matrices, as

U = eiA,

sinceU† = exp(−iA†) = exp(−iA) and henceUU† = 1.

What do we mean by the exponential of a linear operator? Think matrix representation:

eiAt = 1+(iAt)+
(iAt)2

2
+

(iAt)3

3
+ ...

with

An = AA...A

then-fold product. This is fine as long as the operator A is not dependent on time itself, in which case we
need to be more careful.

The unitary time evolution of quantum systems is determined by the Hermitian operator H which corre-
sponds to the observable of the system energy, according to

U(t) = e−(i/h̄)Ht

wheret is the time and̄h a fundamental constant, Planck’s constant, which has units of energy-time (Joule-
sec). The Hermitian operator H is called the “Hamiltonian” and the above equation is a solution of the time
dependent Schrodinger equation. We shall give a heuristic derivation of this in the next lecture by combining
some physical reasoning with the abstract framework of quantum states and operators.

Fundamental (physical) postulates and the Schrodinger equation

Why do quantum state evolve in time according to this particular operator, and what is the meaning of this
operator? To answer this we have to look at quantum mechanics from a more physical perspective. The
physical basis of quantum mechanics rests on three fundamental postulates. These are given below in the
wording of K. Gottfried and T. M. Yan (Quantum Mechanics: Fundamental, Springer 2003).

I. States, superpositionThe most complete description of thestateof any physical systemSat any time is
provided by some vector

∣∣v〉 in the Hilbert spaceH appropriate to the system. Every linear combination of
such state vectors

∣∣Ψ〉
represents a possible physical state ofS.

This last sentence is thesuperposition principlethat we have been using from the very beginning. Note the
difference between a quantum and a classical description of a physical system. A classical description is
complete with specification of the positions and momenta of all particles, each of which can be precisely
measured at any time. In contrast, the quantum description is specified by the wave function

∣∣Ψ〉
that lives

in an abstract Hilbert space that has no direct connection to the physical world. Classical mechanics is
deterministic - particle positions and momenta can be specified for all times using the classical equations of
motion. In contrast, quantum mechanics provides a statistical prediction of the outcomes of all observables
on the system as the wave function

∣∣Ψ〉
evolves. Both descriptions are “complete” but they differ in the

information that can be obtained. The uncertainty principle fundamentally changes the relation between
coordinates and momenta in quantum mechanics.
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II. ObservablesThe physically meaningful entities of classical mechanics, such as position (qorx), momen-
tum (p), etc. are represented by Hermitian operators. Following Dirac, we refer to these as “observables”.
We generalize these today to any physical meaningful entities, i.e., including those observables that have no
classical correspondence (e.g., intrinsic spin).

III. Probabilistic interpretation and Measurement A set ofN replicas of a quantum systemSdescribed
by a state

∣∣Ψ〉
when subjected to measurements for a physical observableA, will yield in each measure-

ment one of the eigenvalues{a1,a2, ...} of Â and asN → ∞ this eigenvalue will appear with probability
PΨ(a1),PΨ(a2), ... where

PΨ(ai) = |
〈
ai

∣∣ ∣∣Ψ〉
|2

and
∣∣ai

〉
is the eigenvector corresponding to the eigenvalueai .

This is precisely the definition of probability in terms of specific outcomes in a sequence of identical tests
on copies ofS, provided that

∑
i

PΨ(ai) = ∑
i

|
〈
ai

∣∣ ∣∣Ψ〉
|2 =

〈
Ψ

∣∣ ∣∣Ψ〉
= 1.

This is automatically satisfied for states that are normalized to unity.

The expectation value of an observableA in an arbitrary state
∣∣Ψ〉

also looks like an average over a proba-
bility distribution:

〈A〉Ψ =
〈
Ψ

∣∣ Â
∣∣Ψ〉

= ∑
i

〈
Ψ

∣∣ ∣∣ai
〉

ai
〈
ai

∣∣ ∣∣Ψ〉
= ∑

i

aiPΨ(ai).

Note that if the stateΨ is an eigenstate ofA, then〈
Ψ

∣∣A
∣∣Ψ〉

= a j

wherea j is the corresponding eigenvalue, i.e., only a single term contributes.

We can generalize this procedure from projection onto eigenstates to projection onto an arbitrary state
∣∣φ〉

.
Thus, the probability to find a quantum systemS that is in state

∣∣Ψ〉
in another state

∣∣φ〉
is equal to

PΨ(φ) = |
〈
φ
∣∣ ∣∣Ψ〉

|2.

This projection of the ket
∣∣Ψ〉

onto another state, be it an eigenfunction of some operator
∣∣ai

〉
, a basis

function for the Hilbert space
∣∣vi

〉
, or an arbitrary state

∣∣φ〉
, is referred to as a “probability amplitude”, since

its square modulus is a probability. Note that the probability amplitude is specified both by
∣∣Ψ〉

and the
other state: the latter specifies the “representation” of

∣∣Ψ〉
which realizes the quantum state in a measurable

basis. The probability amplitude is also referred to as the “wave function” in the specified “representation”.

A single measurementof th observable A on a state
∣∣Ψ〉

in the basis (representation) of eigenstates ofÂ
will yield the valueai , with probabilityPΨ(ai) = |

〈
ai

∣∣ ∣∣Ψ〉
|2. This defines the measurement operator

M̂i =
∣∣ai

〉〈
ai

∣∣
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that acts on the state
∣∣Ψ〉

. The normalized state after measurement is then easily seen to be equal to

M̂i
∣∣Ψ〉√〈

Ψ
∣∣M†

i Mi
∣∣Ψ〉 .

For a measurement in the
∣∣ai

〉
basis this is given by

∣∣i〉 〈
i
∣∣ ∣∣Ψ〉√〈

Ψ
∣∣M†

i Mi
∣∣Ψ〉 ,

where we have abbreviated∣∣ai
〉
≡

∣∣i〉 .

For example, suppose we have the linear superposition∣∣Ψ〉
= α1

∣∣1〉
+α2

∣∣2〉
+α3

∣∣3〉
+ ...+αk

∣∣k〉 .

Making a single measurement of the observableA on
∣∣Ψ〉

will result in the outcomeai with probability

PΨ(ai) = |αi |2

and the resulting state after the measurement is equal to

∣∣i〉 (
αi

|αi |

)
.

The measurement of the observable has “collapsed” the state
∣∣Ψ〉

to a single eigenstate
∣∣i〉 ≡

∣∣ai
〉

of Â
(recall these constitute an orthonormal basis).
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