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| Universal Gate Sets
1.1 Classical

The NAND gate is universal for classical computation.
a
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For any boolean functiof0,1}" — {0, 1}, there is a circuit built of NAND gates (possibly with fantpu
for that function. However the circuit may require an expaig number 2 of gates. Functions which
can be efficiently evaluated require only a polynomial numiSegates. The distinction between functions
which require exponentially large circuits and those whieh be computed with polynomial-size circuits
does not depend on the chosen set of gates.

1.2 Quantum

A setG of quantum gates is called universal if for aniy- 0 and any unitary matri’ onn qubits, there is
a sequence of gateg, ...,g from G such thatf|U —Ug, ---Ug,Uy, || < €.

| (=

HereUg isV ®1, whereV is the unitary transformation ok qubits operated on by the quantum ggte
and| is the identity acting on the remaining— k qubits. The operator norm is defined iy —U’|| =

MaXy)unit vectod| (U —U") V) |-
Examples of universal gate sets include

* CNOT and all single qubit gates

* CNOT, Hadamard, and suitable phase flips

 Toffoli and Hadamard

;I'he Toffoli ggte is a three-qubit gate which complementshirel bit iff the first two control bits are each 1.

—
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An n-qubit gateJ (a 2" x 2" unitary matrix) has exponentially many parameters. Scalfyi in general we
need expn) many gates to even approximéfe

L1

The Solovay-Kitaev theorem says that, as a functiog, tfie complexity of an approximation is only I%g
This is rather efficient — the complexity as a functiomas$ the problem.

Quantum computation may be regarded as the study of thotawiiansformations on qubits that can
be described by a sequence of polynomiah guantum gates from a universal family of gatgsis “easy”

=
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(implementable) iU ~ Uy, ---Ug, for k= O(poly(n)). This definition doesn’t depend on our choice of a
(finite) universal gate family, since any particular gateme gate family can be well-approximated with
a constant number of gates from another universal gatefariiihe constant factor does not affect the
distinction between polynomial- and exponential-sizeuts.

2 Schrédinger,s Equation

Shrodinger’s equation is the equation of motion which dbss the evolution in time of the quantum state.

diy(t

dlw®)
dt

Herehis a constant (called Planck’s constant — we’ll usually asshi= 1), andH is a linearHamiltonian

which is Hermitian,HT = H. Equivalently,H has an orthonormal set of eigenvectdys), all with real
eigenvalues\;: H|@) = Ai|@).

For those of you who are familiar with Shrodinger’'s equatithe unitarity restriction on quantum gates is
simply the time-discrete version of the restriction tha Hamiltonian is Hermitian.

~Hlw)

We will now prove that if the system satisfies Shrodingegsation, then its evolution in discrete time is
described by unitary operations. (We will assume thas time independent.)

Write |(t)) in the basis of eigenvectors bff:
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We get that the change after a discrete time difference tamyni
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In this basis (t) is diagonal.
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3 Quantum Teleportation

The No Cloning Theorem states that no quantum system can copy a qubit; that is, there transform
sending|y) ® |0) — |P) @ |Y). However, if we are willing to destroy the original, we caartsmit a qubit,
even to a remote location.

Suppose Alice4) has access to a quantum stalé = ag|0) +a1|1), which she wants to transmit to a remote
party Bob 8). She can accomplish this by transmitting only classical @f information, provided\ andB
share the entangled two-qubit state

g =
"=

The technique is known agiantum teleportation.

(100) +[11).

The basic idea is thisA controls|@) and the first qubit ofg). A’s strategy, roughly speaking, is to forcibly
entangle|y) with the first qubit|g). A then measures the first qubit @), resolving it completely, and
hopes this will causey) to become entangled with theecond qubit of |@). PresumablyB could then
transfer|() to the second qubit dfp).

As a first try, consider the following diagram. The top linpnesentgy); the bottom two represent the two
qubits of|@).

T 0

That is,A passesy) and the first qubit ofg) through a CNOT gate, and then measures the first qubit of
|@). Now the input into the system as a whole is

oo = 3 alio § i)
i=0, =0,

After passing through the CNOT gate this becomes
S aliiei).
]
Now A measures the middle qubit. Suppose it is measurégtiasnl =i ® j. The state is now
zaj@||j @I7J>
]

Next, A transmitsl to B. If | = 0, B takes no action, while if = 1, thenB performs a bit flip on his qubit
(the bottom qubit in the diagram.) A bit flip is just the tramshation (2 ). Thus we have

Zaj@||j@l,j@l>22aj|j,j>.

This is almost exactly what we want. The only problem is tha,nthe qubit corresponding tay) is
entangled withB's qubit. The entanglement that was necessary to get theewdrocess started is now a
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liability. One way to disentangle them would be farto measure her remaining qubit. But this would
destroyB’s qubit as well.

The ideal solution would be to send the entangle qubits tiitcu CNOT gate—bu# controls the first
qubit andB controls the second. This would require quantum commupitdietweerA andB, which is
prohibited.

The correct solution is to go back and modify the originalgdéan, inserting a Hadamard gate and an
additional measurement:

Now the algorithm proceeds exactly as before. Howévgapplication of the Hadamard gate now induces
the transformation

Yalih) — Gyacy
Finally A measures and sends the measuremenBtdrl he state is now:

> ai(=1)"j).
J

i,j).

If i =0 then we are done; if= 1 thenB applies a phase flip. In either case the state is ag®) + a; |1).

SoA has transported the quantum stat®tsimply by sending two classical bits.
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