C / CS / Phys 191 Unitary Evolution7 No Cloning Theorern, Superdense Co&ing 9 / 4 / 03
Fall 2003 Lecture 4

| Unitary Operators and Quantum Gates

1.1 Unitary Operators

A postulate of quantum physics is that quantum evolutionnigaty. That is, if we have some arbitrary
quantum systert that takes as input a staig) and outputs a different staté| @), then we can descridé
as aunitary linear transformation, defined as follows.

If U is any linear transformation, thegljoint of U, denotedJ ™, is defined by(UV,w) = (V,U'W). In a basis,
UT is the conjugate transposeldf for example, for an operator 2,

U=(23)=u"=(Gd -
We say that) is unitary if UT = U 1. For example, rotations and reflections are unitary. Alse dompo-

sition of two unitary transformations is also unitary (Ptdd,V unitary, thenUV)" =VvTuUT=v-1u-1=
uv)h.

Some properies of a unitary transformatldn
e The rows ofU form an orthonormal basis.
* The colums ofJ form an orthonormal basis.

« U preserves inner products, i@, W) = (UV,UW). Indeed(Uv,Uw) = (U|v))"U|w) = (v|UTU |w) =
<v| W>. ThereforeU preserves norms and angles (up to sign).

« The eigenvalues af are all of the forme® (sinceU is length-preserving, i.e(y,v) = (UV,UV)).

* U can be diagonalized into the form

gt o0 ... 0
0o . . 0
0 0 ¢db

1.2 Quanturn Gates

We give some examples of simple unitary transforms, or “tuargates.”
Some quantum gates with one qubit:

» Hadamard Gate. Can be viewed as a reflection arat/i@] or a rotation aroundtr/4 followed by a
reflection.
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The Hadamard Gate is one of the most important gates. NoteHtha= H — sinceH is real and
symmetric —andi? = 1.

» Rotation Gate. This rotates the planefy
U— cos6 —sinf
~ \ sin@ cos@
* NOT Gate. This flips a bit from 0 to 1 and vice versa.
0 1
vor (99

» Phase Flip.

1 0
2=(5 %)
The phase flip is a NOT gate acting in the ) = %(\O> +|1)),|-) = \%(\O> —|1)) basis. Indeed,
Z|+) =[-) andz|—) =|+).

And a two-qubit quantum gate:

» Controlled Not (CNQOT).

1 000
0100
CNOT= 0 001
0 010

The first bit of a CNOT gate is the “control bit;” the secondhs t'target bit.” The control bit never
changes, while the target bit flips if and only if the contritli® 1.

The CNOT gate is usually drawn as follows, with the contrdlds top and the target bit on the
bottom:

1.3 Tensor product of operators

Suppos¢v> and\w> are unentangled states @' andé™", respectively. The state of the combined systemis
|v> ® |w> on®™. If the unitary operatoA is applied to the first subsystem, aBdo the second subsystem,
the combined state becomag/) @ B|w) .

In general, the two subsystems will be entangled with eabbrpso the combined state is not a tensor-
product state. We can still appl to the first subsystem ariéi to the second subsystem. This gives the
operatorA® B on the combined system, defined on entangled states by ljir@gending its action on
unentangled states.
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(For example(A® B)(|0) ©|0) ) = A|0) ®B|0). (A®B)(|1) ®|1)) = A|1) ®B|1). Therefore, we define
(A®B)(75]00) + 75|11)) to be 7 (A® B)[00) + 25 (A® B)[11) = 7 (A|0) ® B|0) +A|1) ®B|1)).)

V2 V2
Let|e1),...,|em) be a basis for the first subsystem, and whte 3["_; aj|e)(ej| (thei,jth element ofA
is ajj). Let|f1),...,|fa) be abasis for the second subsystem, and Brite;,_, by | fic)( fi|. Then a basis

for the combined system |3> ® \ fj> ,fori=1,....mandj=1,...,n. The operatoA® Bis

(sl o (gmlmcl)

i%aijbk||a><ei|®‘fk><fl‘
- ;aijbkl(\% ® i) (e @ (fi]) -

A®B

Therefore the(i, k), (j,1)th element ofA® B is &by . If we order the basi$a> ® ‘fj> lexicographically,

then the matrix foA® Bis
a;1B a12B
a1B  axB

in thei, jth subblock, we multiplya;; by the matrix forB.

2 No cloning theorem

A quantum operation which copied states would be very us&fil example, we considered the following
problem in Homework 1: Given an unknown quantum state, eimé or |Lp> use a measurement to
guess which one. If(p> and |t,u> are not orthogonal, then no measurement perfectly digshgs them,
and we always have some constant probability of error. Heweafswe could make many copies of the
unknown state, then we could repeat the optimal measuremany times, and make the probability of
error arbitrarily small. The no cloning theorem says that ign’t physically possible. Only sets of mutually
orthogonal states can be copied by a single unitary operator

No Cloning Theorem. Assume we have a unitary operator U and two quantum states \cp> and \Lp> which
U copies, i.e.,

@) [0y = |9)@e)
wyelo) = |wely) .

Then (@| ) isOor 1.

Proof: (¢| )= ((¢| ®(0))(|¢) ®0)) = ({e| @ (@] )(|Y) ® |@)) = (9| )°. In the second equality we
used the fact thdl, being unitary, preserves inner products. O

3 Superdense Coding

Suppose Alice and Bob havegaantum communications channel, over which Alice can send qubiBoin
However, Alice just wants to send a regular classical l[€gequence of bits). One way to send her message
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is to encode a 0 aﬁ)> andal a5§1>. But can she do better than sending as many qubits as bitg in he
message?

Intuitively, since quantum systems are more complex thassital systems, they can hold information — so
maybe Alice can do better. But quantum information is harddoess; when you measure a quantum state,
it looks classical — so maybe she can't.

In fact, if Alice and Bob share a Bell state, then she can sewdctassical bits of information using only
one qubit.

Say Alice and Bob sharﬁﬂ)ﬂ = \/ii(|00> + \11} ). Depending on the message Alice wants to send, she
applies a gate to her qubit, then sends it to Bob. If Alice wamsend 00, then she does nothing to her qubit,
just sends it to Bob. If Alice wants to send 01, she appliepttase flipZ to her qubit, changing the quantum
state to%(mo} —|11)) = |®~). To send 10, she applies the NOT gate, giviﬁg\lw +1]01)) = [wT).

To send 11, she applies ba¥tOT andz, giving %(|01> —|10)) = |w7).

After receiving the qubit from Alice, Bob has one of the fouutally orthogonal Bell states. He can
therefore apply a measurement to distinguish between thigmcertainty, and determine Alice’s message.
In practice, the way he’ll make this measurement is by rumpie circuit we saw in Lecture 2 backwards
(i.e., applying(H ® 1) oCNQOT), then measuring in the standard basis.

Note that Alice really did use two qubits total to send the tiassical bits. After all, Alice and Bob
somehow had to start with a shared Bell state. However, tisgfitbit — Bob’s half of the Bell state — could
have been sent well before Alice had decided what messageasited to send. Perhaps only much later
did she decide on her message and send over the second qubit.

One can show that it is not possible to do any better. Two gubie necessary to send two classical bits.
Superdense coding allows half the qubits to be sent beferemnéssage has been chosen.
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