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|
Hilbert Spaces, Tensor Producatsgubits.

This lecture will formalize many of the notions introducediarmally in the first two lectures.

0.1 Hilbert Spaces

Consider a discrete quantum system thatldsstinguishable states (e.g. a system that can be in oke of
distinct energy states. The state of such a system is a uninie ak dimensional complex vector spae&.
The k distinguishable states form an orthogonal basis for théovespace - say denoted lﬂ/1>,...,|k>.
Here we are using the standard inner-product &eto define orthogonality. Recall that the inner-product

of two vectors|@) = ¥ ai|i) and|@) =3 Bii) is 3; i
Dirac’s Braket Notation
We have already introduced the ket notation for vectors.

If v) = ¥;aili) and|w) = 5; Bi), then we have already observed that

B
Bd

We denote the row vectdir - - - 0y) by (v| and the inner produd®, W) by (v|w).
(v| is abra, and|w) is aket, so(v|w) is abraket.

To demonstrate the utility of this notation, le} be a vector of norm 1. Defin@ = |v)(v|. Then for anylw)
we haveP|w) = |v)(v|w), soP is the projection operator onta) (see diagram.) Note th&f = |v) (v|v)(v| =
P since|v) has norm 1.

More abstractly, the state of a quantum system is a unit vecta Hilbert space. A Hilbert space is a
complex vector space endowed with an inner-product andhwikicomplete under the induced norm. The
vector space axioms give us notions of span and linear imilgmee of a set of vectors. However, to
endow the vector space with geometry — the notion of anglevdser two vectors and the norm or length
of a vector, we must define an inner-product — whose propedie listed below. The third property —
completeness — is trivially satisfied for a finite dimensiasgstem, so we will not bother to define it here.

* An inner product on a (complex) vector spadé is a map(-,-) : V xV — ¥ satisfying for each
uvweV anda,B €%:

(i) (V,V) >0, and(V,V) = 0 if and only if v = O;
(i) (al+ BvV,W) = o (U, W)+ B(V,W);
(ii)) (V,W) = (W,V).
An inner product space is a vector space together with an inner product.

* VectorsV,w € V areorthogonal if (V,w) = 0.
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* A basis for V is a set{vy,---,V4} such that eacl¥ € V can be written uniquely in the form =
a1Vi+---+ apVn. The basis is said to barthonormal if (Vi,Vj) = & for eachi, j. (Hereg; =1 if
i=jandO0ifi# j.)

Note that we can associate to each inner product space aicahonarm, defined by|V|| = /(V,V). A
Hilbert spaceis an inner product space which is complete with respecstoatm. IfV is finite-dimensional
(i.e. it has afinite basis), then completeness is autontigtisaisfied. Furthermore, there is only one Hilbert
space of each dimension (up to isomorphism.)

02 Tensor Products

Consider two quantum systems - the first whtdistinguishable (classical) states (associated Hillpats
%), and the second withdistinguishable states (associated Hilbert sggge What is the Hilbert space as-
sociated with the composite system? We can answer thisigunest follows: the number of distinguishable
states of the composite systenkis— since for each distinct choice of basis (classical) qﬁate)f the first
system and basis statha> of the second system, we have a distinguishable state obtheasite system.
Thus the Hilbert space associated with the composite syistéf.

The tensor product is a general construction that shows baye from two vector spacés andW of di-
mensiork andl to a vector spac¥ @ W (pronouncedV tensotW”) of dimensionkl. Fix basegvy ), ..., |)
and|wi),...,|w) for V,W respectively. Then a basis fdr@W is given by

{viy®@|wj) 1 1<i<kl<j<I},

so that dinfV @ W) = kl. So a typical element of @ W will be of the formy;; aij(|vi) @ [w;j)). We can
define an inner product oh @ W by

(V1) @ [wa), [v2) @ [W2)) = (|va), [v2)) - ([wa), [Wa)),

which extends uniquely to the whole spateW.

For example, consid&f = €2 ® €. V is a Hilbert space of dimension 4, ¥o= €. So we can writé00)
alternatively as0) ® |0). More generally, fon qubits we havé&s?® - - (ntimes)®--- €2 = ¢?". A typical
element of this space is of the form

; Ox|X).
xe{0,1}"

A word of caution: Not all elements &f ® W can be written a$v) ® |w) for [v) € V, |w) e W. As an
example, consider the Bell statg") = %(|00> +]12)).

0.3 The Signiﬁcanee of Tensor Products

Classically, if we put together a subsystem that stérbgs of information with one that stordsbits of
information, the total capacity of the composite systet-id bits.

From this viewpoint, the situation with quantum systemsxsemmely paradoxical. We neddcomplex
numbers to describe the state of a k-level quantum systenv.ddosider a system that consists of a k-level
subsystem and an I-level subsystem. To describe the cotamystem we neekl complex numbers. One
might wonder where nature finds the extra storage space whgmutithese two subsystems together.
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An extreme case of this phenomenon occurs when we considemabit quantum system. The Hilbert
space associated with this system is the n-fold tensor ptarfig’2 = ¥2'. Thus nature must “remember”
of 2" complex numbers to keep track of the state ofnagubit system. For modest values obf a few
hundred, 2 is larger than estimates on the number of elementary pestiolthe Universe.

This is the fundamental property of quantum systems thagas in quantum information processing.

Finally, note that when we actually a measurenaqubit quantum state, we see only rubit string - so we
can recover from the system omyrather than 2, bits of information.

C/CS/Phys 191, Fall 2003, Lecture 3 3



	Hilbert Spaces
	Tensor Products
	The Significance of Tensor Products

