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Entanglement, Bell States, EPR Paradox, Bell Inequalities

1 One qu]oit:

Recall that the state of a single qubit can be written as arpopition over the possibilities 0 and []L,U> =
a|0) +B|1). Measuring in the standard basis, then, there is probahilif that we get 0 and the new state
is [¢) =0), and probabilityi3|? that we get 1 andiyy’) = |1).

More generally, we can measure the qubit in any orthonormsistsimply by projectin¢w> onto the two
basis vectors. The new state of the sysl{airh> is the outcome of the measurement. This is known as the
Heisenberg picture.

The Schrodinger picture is equivalent. Instead of meagutie system in a rotated basis, we rotate the
system (in the opposite direction) and measure it in tharalgstandard basis.
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Heisenberg Schrodinger

Rotations over a complex vector space are called unitansfibamations. For example, rotation Byis
unitary. Reflection about the ling/2 is also unitary.

Hadamard gate:

The Hadamard gate is a reflection about the Bne 11/8. This reflection maps theaxis to the 45 line,
and they-axis to the—45° line. That is

0) == F10) + 5511 =|+) (1)
1) = 310 - FHln =1-) - @

In matrix form, we write
1 /1 1
H=—"—
vV2\1 -1

Notice that, starting i) either|0) or |1), H|y) when measured is equally likely to give 0 and 1. There
is no longer any distinguishing information in the bit. Thm$ormation has moved to the phase (in the
computational basis).

In a quantum circuit diagram, we imagine the qubit travgllirom left to right along the wire. The following
diagram shows the application of a Hadamard gate.
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2 Two qu]aits:

Now let us examine the case of two qubits. Consider the twaireles in two hydrogen atoms:

Since each electron can be in either of the ground or excited, classically the two electrons are in one of
four states — 00, 01, 10, or 11 — and represent 2 bits of cllgsiormation. Quantum mechanically, they
are in a superposition of those four states:

|¢) = apo|00) + ap1|01) + a10|10) + a11|11)

wherey ;| aij|? = 1. Again, this is just Dirac notation for the unit vectordf:

wherea;; €%, ¥ |aij|> = 1.
M easurement:

If the two electrons (qubits) are in staﬁ¢> and we measure them, then the probability that the first qubit
is in statei, and the second qubit is in statés P(i, j) = |aij]| 2. Following the measurement, the state of the
two qubits is\tp’} = |ij>. What happens if we measure just the first qubit? What is tblegtnility that the
first qubit is 0? In that case, the outcome is the same as if Wertgmsured both qubits: Ptst bit =0} =

| ool 2y |ctoa] 2. The new state of the two qubit system now consists of thasestin the superposition that
are consistent with the outcome of the measurement — butatized to be a unit vector:

o) = Cfoo|oo> —|—C¥01|01>

@)
\/ 10t00] ® + 0]

A more formal way of describing this partial measurementhit the state vector is projected onto the
subspace spanned B§0) and|01) with probability equal to the square of the norm of the priiet, or
onto the orthogonal subspace spanneqlm)} and \11} with the remaining probability. In each case, the
new state is given by the (normalized) projection onto tispeetive subspace.

Tensor products (informal):

Suppose the first qubit is in the stdim) = a1|0) + B1|1) and the second qubit is in the staty) =
02|0) + B2|1) . How do we describe the joint state of the two qubits?

@) = loyole)
0102|00) + a132|01) + B102|10) + B132|11) .
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We have simply multiplied together the amplitudes|@f; and|0), to determine the amplitude ¢®0);2,
and so on. The two qubits are not entangled with each othemmasurements of the two qubits will be
distrbuted independently.

Given a general state of two qubits can we say what the staaobf of the individual qubits is? The answer

is usually no. For a random state of two qubits is entangled earinot be decomposed into state of each
of two qubits. In next section we will study the Bell stated)ieh are maximally entangled states of two

qubits.

CNOT gate: The controlled-not (CNOT) gate exors the first qubit into $eeond qubit|@,b) — |a,a®
b) = |a,a+bmod 2)). Thus it permutes the four basis states as follows:

00— 00 01—01
10— 11 11— 10 .

As a unitary 4x 4 matrix, the CNOT gate is

1 00

0100
0 001
0 010

In a quantum circuit diagram, the CNOT gate has the followayresentation. The upper wire is called the
control bit, and the lower wire the target bit.

It turns out that this is the only two qubit gate we need toktahbout . ..

3 Spooky Action at a Distance

Consider a state known as a EPR pair (also called a Bell state)
) = —((01) ~[10))
V2

Measuring the first bit ofW‘} in the standard basis yields a 0 with probability 1/2, and thyprobability
1/2. Likewise, measuring the second bit\Gﬂ*> yields the same outcomes with the same probabilities.
Measuring one bit of this state yields a perfectly randoncone.

However, determining either bit exactly determines thepth

Furthermore, measurement ](bP*> in any basis will yield opposite outcomes for the two qubits. see
this, check thaf¥~) = % (|wh) = |vtvy ), forany|v) = a|0) +B(1), [v*) = a]1) —B|0).

Bell states:

Including |¥~), there are four Bell states:

@) = 75(/00) +[11))
W5 = S (on £10)) -
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These are maximally entangled states on two qubits. Theyatdre product states because there are no
Cross terms.

We can generate the Bell states with a Hadamard gate and a @&l®TConsider the following diagram:

[H]

— ]

The first qubit is passed through a Hadamard gate and therghbits are entangled by a CNOT gate.

If the input to the system i€) ® |0), then the Hadamard gate changes the state to

3(0)+ 1) 210) = 3100 + 3|10 |

and after the CNOT gate the state becorﬁgaom +111)), the Bell statdd™). In fact, one can verify that
the four possible inputs produce the four Bell states:

00) %<|00>+|11>> ~ |ot); 03) — (10D +[10) = [¥*);
1 N 1 .
10— (00 - [11)) =0 13 = (108 - [10) = |¥")

3.1 EPR Paradox:

In 1935, Einstein, Podolsky and Rosen (EPR) wrote a papear ¢Dantum mechanics be complete?” [Phys.
Rev. 47, 777, Available online via PROLAt t p: // prol a. aps. org/ abstract/ PR/ v4// 110/ p/ /7 1]

For example, consider coin-flipping. We can model coin-fligpas a random process giving heads 50% of
the time, and tails 50% of the time. This model is perfectlgdictive, but incomplete. With a more accurate

experimental setup, we could determine precisely the rahggtial parameters for which the coin ends up

heads, and the range for which it ends up tails.

For Bell state, when you measure first qubit, the second qubitermined. However, if two qubits are far

apart, then the second qubit must have had a determinedirstsdene time interval before measurement,
since the speed of light is finite. Moreover this holds in aagib. This appears analogous to the coin
flipping example. EPR therefore suggested that there is a nwnplete theory where “God does not throw
dice.”

What would such a theory look like? Here is the most extravaffamework. . . When the entangled state
is created, the two particles each make up a (very long!ofisll possible experiments that they might be
subjected to, and decide how they will behave under eacheqpgriment. When the two particles separate
and can no longer communicate, they consult their resgelisits to coordinate their actions.

But in 1964, almost three decades later, Bell showed thatepties of EPR states were not merely fodder
for a philosophical discussion, but had verifiable conseqges: local hidden variables are not the answer.

4 Bell's Inequahty

Bell's inequality states: There does not exist any locatlbidvariable theory consistent with these outcomes
of quantum physics.
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Consider the following communication protocol in the cleasworld: Alice (A) and Bob B) are two

parties who share a common striBgThey receive independent, random s Xg, and try to output bits
a, b respectively, such tha¢a A Xg = a® b. (The notatiorx A y takes the AND of two binary variablesand

y, i.e.,is one ix=y =1 and zero otherwisx®y = x+y mod 2, the XOR.)

In the quantum mechanical analogue of this protoéchnd B share the EPR paiw—>. As before, they
receive bitsXa, Xg, and try to output bitg, b respectively, such thaga A Xg = a® b.

If the odd behavior oﬂLIJ*> can be explained using some hidden variable theory, theiwihgrotocols
give above should be equivalent.

However, Alice and Bob’s best protocol for the classical gaas you will prove in the homework, is to
outputa = 0 andb = 0O, respectively. Them® b = 0, so as long as the inputXa, Xs) # (1,1), they
are successfula®b = 0= XaAXg. If Xa = Xg = 1, then they fail. Therefore they are successful with
probability exactly 34.

We will show that the quantum mechanical system can do be®pecifically, if Alice and Bob share an
EPR pair, we will describe a protocol for which the probapilPr{Xa A Xg = a® b} is greater than 3/4.

We can setup the following protocol:

if Xa = 0, then Alice measures in the standard basis, and outputeshiét.

if Xa =1, then Alice rotates byr/8, then measures, and outputs the result.

if Xg = 0, then Bob measures in the standard basis, and outputsrimeraent of the result.

if Xg = 1, then Bob rotates by 11/8, then measures, and outputs the complement of the result.

Now we calculate Pfa® b+ XaAXg}. (Recall that if measurement in the standard basis yigiswith
probability 1, then if a state is rotated I8y measurement yield@ with probability cod(6).) There are
four cases:

Priadb#XaAXg} = Z(%Pr{a@b;éXAAXBIXA,XB}
Xa, X8

Now we claim

Pr{adb#XaAXg|Xa=0,Xg=0} = 0
Pr{iadb#XaAXg|Xa=0,Xg =1} = sir?(1/8)
Pr{iadb#XaAXg|Xa=1,Xg =0} = sin?(71/8)
Priadb#XaAXg|Xa=1,Xg =1} = sin’(m/4)=1/2 .

Indeed, for the first cas&a = Xg = 0 (soXa A Xg = 0), Alice and Bob each measure in the computational
basis, without any rotation. If Alice measuras= 0, then Bob’s measurement is the opposite, and Bob
outputs the complemenb, = 0. Thereforeac® b = 0= Xa A Xg, a success. Similarly if Alice measures
a= 1, they are always successful.

In the second cas&a = 0, Xg = 1 (Xa A Xg = 0). If Alice measures = 0, then the new state of the system
is |01> ; Bob’s qubit is in the stat¢1> . In the rotated basis, Bob measures a 1 (and outputs its eomept,

0) with probability cod(77/8). The probability offailure is therefore 1- co(71/8) = sin?(71/8). Similarly

if Alice measuresa = 1. The third caseXa = 1, Xg = 0 is symmetrical.
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In the final caseXa = Xg = 1 (soXa A Xg = 1), Alice and Bob are measuring in bases rotated 45 degrees
from each other, so their measurements are independenprdbability of failure is ¥2.

Averaging over the four cases, we find

Priadb#XaAXg} = 1/4(2sirf(m/8)+1/2)
= 1/4(1—cog2x1/8)+1/2)
— 1/4(3/2— \/§/2>
~ 1/8(3—14)
= 16/8=.2.
The probability of success with this protocal is therefareuad .8, better than any protocol could achieve
in the classical, hidden variable model.
Exercise: Consider the GHZ (Greenberger-Horne-Zeilinger) stat@, gdibits:

1
> (|000) —|011) — |101) — [110))
Suppose three parties, A, B and C with experimefts<g, Xc respectively, with the constraitta & Xg ®

Xc = 0. Outputa,b,c s.t. Xa V Xg V Xc = ac® b&® ¢. Show that this can be done with certainty. Hint: you'll
need the Hadamard matrix,

1
=21 )
which takes
0) 5 (0) +[1))

1~ 250 -11)

N
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