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Spring 2005 Lecture 14

| Entang]ement and Spin

So far we've talked about 1 qubit operations (ey)) = |¢) = a’|0) + B’|1)). But what about entangle-
ment? What about when there are more than one qubits?

Question: How do we physically create an entangled state of 2 spins?

Answer: Must have an interaction between them, fveo particle Hamiltonian.

How do we create such an interaction and how does it lead to entanglemeist3tai with two physical
qubits, say, electrons:

Claim: The ground state of this system is an entangled state! Nafely= 1 (|0)1|1)2—[1)1[0)2), a
Bell state!

How do we show this? It's the same old quantum story, solving the Schrtiegqua

So what isH? We must figure out how these electrons interact with each other. Wieat ebuld one
electron have on the other electron, and vice versa?

Well, we know that an electron has a magnetic dipole moment that is related to itsagmetic dipole
moments come up classically when you have current loops, so concepteattarwthink of electrons as
little current loops that generate dipolar magnetic fields. But if one elecenargtes a magnetic field, then
the other electron can “feel” that electric field. If you put two electronselenough together, then we
imagine that the two generated fields from electron #1 (#2) will be felt byrrele¢2 (#1).

What does this look like mathematically, i.e. what is the Hamiltonian? Well, we kﬁow—n%é and
H = [i-B. But we know that the magnetic field produced by a magnetic moment is prapairtio that
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vector, so we can sa8, 0 S;, or By = AS; whereA > 0. So,

~ e o

H=—(-=%) A (1)
or equivalently,

H=C$ & 2

whereC > 0. This is our electron interaction Hamiltonian. You might wonder what C is. d@tilshbe a
strong function of the relative position, but we don’t want to worry atibat now. You can just imagine that
C is determined through experiment, but is equal to some value that is yet tidrenthed. The important
part is theS; - S term.

So what is the ground state of this Hamiltonian? Let’s use a little trick (whenexengar “trick” in regards
to spins and angular momentum, it's time to bust out the raising/lowering opgrators

ConsiderSroa = S+ S, a new operator that should represent ittel spin of the two electron system.
Let's look at some features of this new operator:

§r-§r=§2r=(§1+§z)-(§1+$):§+§+2§2-§1 3
We see that the dot produ$t- S, has appeared. Let's solve for this quantity:

$8=38-8+9) (4)

and therefore our interaction Hamiltonian can be expressed as:

|:|:

($-S+9) (5)

NO

So, the ground state will be whatever state minimizes the expectation value gb¢héar (recalk E >=
(w[H]w)).

Note that no matter what) is, &|¢) =1 (3 +1)|¢) = 3R?|y). The same goes fd#, so we can
replace botts} andS3 with %ﬁz. We see that the Hamiltonian can be rewritten as:

H=D& -F (6)

where D and F are constants greater than zero. So whai gtateas the smallesty| &|@)? The best we
could hope for i§y) such thaty|S¢|y) = 0.
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It is left to a homework problem to show that the following state

W)o= 75 (01]0)2-|1)1/0)2 @

is an eigenstate cﬁ% with eigenvalue 0.

We conclude from this that we can experimentally create a Bell state by putSpmn® next to each other
and then providing a perturbation such that the fall into the ground state!

2 Interaction Hamiltonians in General

Electron spins are hardly the only quantum system that can be entangie®, might want to talk about
general entanglement through “interaction Hamiltonians.” In the most gesemse, we can talk about two
guantum numberns; andx, (i.e. quantized physical observables) that yield the following Hamiltonian:

|:| (Xl, Xz) = |:|1 (X]_) + |:|2 (Xz) -+ |:|/ (X]_,Xz) (8)

whereH’ (x1,%2) # Hj (x1) + Hj (x2). If this is the case, then resultant energy eigenstates will not in general
be product states:

P (X1, X%2) # YPa(Xa) - Yo (X2) 9)

This is the definition of entanglement! Therefore, in our quest for entaregie we need to focus our
attention on interaction Hamiltonians. In the case of sgihs; CS; - S is such a Hamiltonian, and we will
explore others in coming lectures.

3 Introduction to Atomic Qu]oits

Whenever we think of qubits we will try to draw analogies to the spin-1/2 systeiet’s now consider
another very useful quantum system: Atoms!

What is an atom? How can it be thought of as a qubit?

Quick answer: An atom is a tiny box that holds electrons in discrete energy levels. If | gamsfon one
particular electron that can hop between 2 different states, then thatiisth g

Question: How do we measure and manipulate this qubit? Equivalently, how do we c¢¢rt)'olthe state
of the valence electron?

Answer: Apply a Hamiltonian!! Apply an external field that leads to sohi€to quote Dr. Evil, this is
usually done with a “laser”).

Once we've created the desired Hamiltonian, as usual we solve the Sphatidh (is this sounding like a
broken record yet?). The Hamiltonian drives the time development of tiensybrough the time develop-
ment operatoe "HY/M and we can changey) — [¢/).
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Note: if we keep our focus on only one electron hopping between two steieshis problem igdentical to
the spin-1/2 problem! We have to relabel some quantities, but the physetal(amately the results) are the
same. Our atomic state (specified by the state of the valence elemr)nné a|0> +B}l> can be thought
of as a vector on the Bloch sphere, even though it's not spin.

To move forward, however, we must have a better ide(é))ohnd ] 1> actually are, and how do we compute
H and its action o¢w>. \0> and\l> are atomic energy levels for a single atom. Equivalently we could say
that\O} and]l> are the energy eigenstates for an electron orbiting a nucleus.

Ho|0) = E,|0) 0
Hol1) = E4[1)

So what is the HamiltoniaH, describing this? We can focus on hydrogen because it's conceptualliesimp
Practically, experimentalists don’t usually work with hydrogen becaus@ri€ty tricky to deal with. A
large chunk of modern atomic physics (esp. quantum computing respacline with hydrogenic atoms
(i.e. alkali metals and ions with a single valence electron).

Anyway, what isH,, for the simplest atom, hydroge® comes from classical energy:

E =KE+PE
. (11)
E=L+=%

So, in the quantum mechanical way, we turn classical observables likeop@nd momentum into opera-
tors, and this gives us our hydrogenic Hamiltonian:

=3

. (12)

IFl

I:Io:

™)
3

To get the energy levels of hydrogen we just need to solve this Hamiltontdaa.wbuld be large aside for
this course, so if you're interested (and you should be!) then youdhake a QM course like 137A.

You can take it as given that this Hamiltonian yields quantized energy levelsie®, pretty-looking wave-
functions. Let’s take a look at the general form of these wavefunc{exmessed in the natural coordinate

= uaﬁ%}i

et{ec"{'rcﬁw 2 %
» ¥ = Klov+pl(1y)/

et

?"l'\'-—-.._;
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system, spherical coordinates):

Un(T) = Ynim (1, 0,9) = Rl (1) Yim (6, @)

E __ —13.6eV
nlm= —"nz

(13)

So we get electronic wavefunctions in three dimensions with three quantorbens: n, I, and m. nis
called the principle quantum number, since it determines the energy. | is thtotgof the orbital angular
momentum, it being the eigenvalue index of fifeoperator (this is exactly equivalent to s being the index
of the & operator, except that | can only take on integer values). m is the eigerinalex ofL, (again, just
like mforS,.

The energy levels can be degenerate (many quantum states at the segyg and some degeneracies can
be lifted by various perturbations. We are going to ignore all this detail, wdngetin would be coveread
nauseumin a course like 137A.

Even though the hydrogenic Hamiltonian has resulted in a infinite number sili@states, we can assume
that the electron spends most of its time hopping between just two states anel iigamthers. This is a
surprisingly good approximation!

|0) — Ry (r)Yim (6, @) for somen, |, m; Eo = Enjm

|1) = Ry (1) Yirmy (6, @) for somen’, I, m; E1 = Epy

Okay, now we know whal0) and|1) look like. What doesd look like in the restricted subspace defined
by |0) and|1)?

2

This is a slightly awkward question, since | already told you for an “unpleeal’ atomH = H, = '67“ + _‘re‘Z

So, you might say that! is a function of positionf.” Or, you might say that#i is a 2x 2 matrix.”

Both of these answers are correct! How do we reconcile them? KEY P®iNGoks different for different
bases!!

If we're talking about the motion of an electron through space aroundubleus, then a convenient basis
is {|F) }, the set of all point§ throughout space. In this cas¢ = f(F), a function off = could construct a
matrix usingHy, r, = (f1| H|r2) ... but let's not!

If we're talking about jumps between two quantum levé$, and|1) , then a convenient basis{i$0) , |1) }.
This is a 2-D basis, sH is a 2x 2 matrix:
A Hix Hi2 )
H 14
o ( Hz1 Haz (14)
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The moral of the story is to choose your basis wisely!
How do we construct the matrkd;;? We must find the matrix elemer(t'e} I:|o\ j> :

Hi1 = (0| Ho|0) = Eo(0|0) = Eo

Hiz = (0| Ho|1) = E1(0[1) =0

o 15
Hz1 = (1|Ho|0) = Ex(1|0) =0 (15)
Hao = (1|Ho|1) = E1(1]1) = E;
So our matrix becomes:
A E, O
Ho — ( 0° £ ) (16)

So, we now have the Hamiltonian that describes the state of an electron iperiurhed atom. Note that

this looks just like the Hamiltonian for a spin in a magnetic fieftlt & < BO° ?3 )
—Po

Let's use this Hamiltonian to get some time-dependence going:

w(t=0)) =alo) +B[1) = [w() =™/ y(0)) (17)

So, we get the following time dependent state:

‘w(t)> — a’o> efiEot/ﬁ+B}1> efiElt/ﬁ (18)

Geometrically, this can be interpreted as a vector on the Bloch sphere, giiirigpin (even though it's not
actually spin).

i® - g
jdx L far+ Bl = (D‘g(o>+ By

e o Btiatd (B32) & ne ploed

(7 ener gy ditfrnece I —E,

If \t,U(O)> starts off at(6o, @), at a timet later \t,u(t)> has rotated byAg around thez axis at angular
frequencyw, = S-522.

BUT, we see thaH will never induce “spin-flips,” i.e. change ratio betweké)) and \1) (i.e. changed).
How do we dathat? We’ll see next lecture...
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