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1 Spin Resonance
How do we control qubit states in the lab? If

∣

∣psi(t)
〉

= α(t)
∣

∣0
〉

+ β (t)
∣

∣1
〉

, how do we deterministically
changeα andβ?

We know that the Hamiltonian evolves things in time, so if we turn on a field then the Hamiltonian will
evolve the state viae−iĤt/h̄.

For a static magnetic field this allows us to rotate qubit state from one point on the Bloch sphere to another
via rotations:

R̂i(∆θ) = e−iŜi∆θ/h̄,∆θ =
eBo

m
∆t,~B = Box̂i

Question: How can we maintain energy level splitting between
∣

∣0
〉

and
∣

∣1
〉

andcontrol the rate at which a
qubit rotates between states? (i.e. change it at a rate different fromωo = eBo

m .)

Answer: Spin Resonance gives us a new level of control (most clearly seen in NMR).

How it works: Turn on a big DC fieldBo and a little AC field~B sin( ωo t) that is tuned to the resonance
ωo = eBo

m :

Figure 1:

The small AC field induces controlled mixing between
∣

∣0
〉

and
∣

∣1
〉

... “SPIN FLIPS”.

We must solve the Schrodinger equation to understand what is going on:

ih̄
∂
∂ t

∣

∣ψ(t)
〉

= Ĥ
∣

∣ψ(t)
〉

It is convenient to use column vector notation:

∣

∣psi(t)
〉

= α(t)
∣

∣0
〉

+β (t)
∣

∣1
〉

=

(

α(t)
β (t)

)

What’s the Hamiltonian?̂H = −~µ ·~B = e
m
~S ·~B
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We now let the magnetic field be composed of the large bias field and a small oscillating transverse field:

~B = Boẑ+B1cosωotx̂

With this we obtain the Hamiltonian:

Ĥ =
e
m

BoŜz +
e
m

B1cosωotŜx

Now use 2×2 matrix formulation, where the Pauli matrices (Ŝz = h̄
2σz, etc.) are of course eminently useful:

Ĥ =
e
m

Bo ·
h̄
2

(

1 0
0 −1

)

+
e
m

B1cosωot ·
h̄
2

(

0 1
1 0

)

The two terms sum to give the following 2×2 Hamiltonian matrix (expressed in theŜz basis):

Ĥ =
eh̄
2m

(

Bo B1cosωot
B1cosωot −Bo

)

Now we can plug this Hamiltonian into the Schr. equation and solve for
∣

∣psi
〉

.

A bit of intuition on QM: If you construct a Hamiltonian matrix out of some basis, then the matrix element
Hi j tells us how much application of the Hamiltonian tends to send a particle from state

∣

∣ j
〉

to state
∣

∣i
〉

.

(The units are of course energy⇒ rate of transitions∝ frequency∝ E
h̄ ∝ Hi j

h̄ .)

So, if we only had~B = Boẑ and~B1 = 0, then what would the rate of spin flip transitions be?

ratei← j ∝
〈

i
∣

∣ Ĥ
∣

∣ j
〉

=
∣

∣1
〉

Ĥ
∣

∣0
〉

= H21 = 0!

So, we can conclude that we NEED to have a field perpendicular to the largebias field~B = Boẑ to induce
“spin flips” or to mix up

∣

∣0
〉

and
∣

∣1
〉

states in
∣

∣ψ
〉

. This is perhaps more obvious in case of spin, but not as
obvious for other systems. It is important to develop our quantum mechanical intuition which can easily get
lost in the math!

Now let’s solve the Schr. equation for Spin Resonance.

Ĥ
∣

∣ψ(t)
〉

= ih̄
∂
∂ t

(

α(t)
β (t)

)

=
eh̄
2m

(

Bo B1cosωot
B1cosωot −Bo

)(

α(t)
β (t)

)

We get two coupled differential equations. First, we defineωo = eBo
m andω1 = eB1

2m , where the latter quantity
is defined with a seemingly annoying factor of 1/2. It’ll make sense later, though.

i
∂α(t)

∂ t
=

ωo

2
α(t)+ω1cos(ωot)β (t)
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i
∂β (t)

∂ t
= ω1cos(ωot)α(t)−

ωo

2
β (t)

To solve we make a substitution. This may seem weird, but it involves the recognition that the system has a
natural rotating frame in which the system should be viewed.

a(t) = α(t)eiωt/2

b(t) = α(t)e−iωt/2

Now we’re going to use a dubious approximation, but it involves a recognition thatωo is much larger than
ω1 and these fast rotations average to zero on the timescales 1/ω1 (which are the relevant experimental
timescales). Anyway, here’s the dubious approximation:

cos(ωot)eiωot
≈

1
2

Using these definitions and dubious approximations and we obtain the followingdifferential equation for
a(t) (and correspondingly b(t)):

∂ 2a(t)
∂ t2 +

ω2
1

4
a(t) = 0

This is a familiar second order differential equation. Our initial conditions have yet to be specified, but let’s
sayα(0) = β (0) = 0. This gives the following solution:

(

α(t)
β (t)

)

=

(

e−i ωo
2 tcos ω1

2 t
−e+i ωo

2 tsin ω1
2 t

)

What does this mean geometrically? Let’s go to the Bloch sphere! Our generalized Bloch vector looks like:

∣

∣ψ
〉

= cos
θ
2

∣

∣0
〉

+ eiφ sin
θ
2

∣

∣1
〉

Our time-dependent state which is a solution to the Schr. equation looks like:

∣

∣ψ(t)
〉

= cos
ω1t
2

∣

∣0
〉

+ ei(ωo+π)sin
ω1t
2

∣

∣1
〉

Geometrically we can say thatφ = ωot +π, so we conclude that the qubit is spinning around ˆz at a rateωo.
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What aboutθ? θ = ω1t, so we’re crawling up the sphere at a rateω1 = eB1
m at the same time we’re spinning

rapidly about ˆz at the fastωo, theLarmor frequency. We can controlω1 precisely by changing the amplitude
of B1.

Even thoughω0 is very large,ω1 can be very small. If we’re really good, we can flip spins by applying a
“π-pulse”: ω1∆t = π.

Note: As spins flip out of ground state they suck energy out of the “RF field” (B1cosωo). This is easily
detected and forms the basis of NMR.

Now let’s talk about a little bit of quantum weirdness. What happens if we takethe spin wavefunction of
a particle, break it into two pieces and let it interfere with itself? How do you dothis? Use a classic 2-slit
experiment. You can get strange interference effects.

Imagine the following strange device:

Figure 2:

The particle starts in spin up
∣

∣ψ
〉

A =
∣

∣0
〉

. So what we will do is shoot spins through the device and measure
the number of spins that get through to B:

∣

∣ψ
〉

B = e−iĤt/h̄ =
∣

∣ψ
〉

A =
∣

∣ψ
〉

path1 +
∣

∣ψ
〉

path2

This is the classic description of interference where we superpose to quantum states and see if they con-
structively or destructively interfere. But what are the quantum states for the two paths?

∣

∣ψ
〉

path1 =
∣

∣0
〉

and

∣

∣ψ
〉

path2 = e−i Ŝz
h̄ ∆φ ∣

∣0
〉

where∆φ = eBo
m ∆t and∆t is the transit time.

Now let’s suppose thatBo and∆t are tuned so that∆φ = 2π. What happens?

This is the subject of a homework problem.
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