C/CS/Phys 191 Spin Precession 10/2/03
Fall 2003 Lecture 12

1 Larmor Precession

Turning on a magnetic fiel&, the qubit state rotates. There are two steps to undersgriis process,
essentially the same steps we make to understand any quamgess:

1. FindH

2. Solve Schrodinger equation

For the second step, we first solve the “time-independentit@tinger equation; that is, we find energy
eigenstates

|:”Lﬂn> = EnW’n> :
The “time-dependent” Schrodinger equation
NG lw(t) = Hlw(t)
has solution 4
() =e M Y(t=0) .
Expanding|g(t = 0)) = ¥ Cal ), we get

W) = 3 coe = gy

(This assumes thai is time-independent. If the Hamiltonian is itself a funatiof t, H = H(t), then we
must directly solve the time-dependent Schrodinger égjuat

1.1 Find 2

Assume there is only potential energy, not kinetic enerdgssically,E = —[i- B. Quantumly, the magnetic
moment is in fact a vectaperator, [| = X S= —%ﬁ Hence we set the quantum Hamiltonian to be

T 2m
H=2SB.
We may choose our coordinate systenBse BZ; then
i s
H=3S .

[EnY
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1.2 Solve Schrédinger Equation

Following the recipe we gave above, we start by finding thereigcomposition dfi. The eigenstates of

are just those 0%, |0) (up) and|1) (down). The corresponding eigenenergiesEye- £h, E; = — &R,

Next we solve the time-dependent Schrodinger equationteWr
[W(t=0) =a|0)+pB|1) .

Then

.eB .eB
@) = ae'2m'|0)+ Be'am'(1)
0 alo)+pemL)

where the proportionality is up to a global phase. On the Bkuhere,
l@(t = 0)) = cos|0) +singe?|1)

evolves to )
lY(t)) = cosg|0> _|-Singe|(¢+mt)|l> '

Thus the state rotates counterclockwise around éxes, at frequencyy = % (ap is known as the cyclotron
frequency, since it is the same frequency with which a atassi™ cycles in a magnetic field, due to the
Lorentz force).

ThereforeR,(A¢) = e isa unitary operation which rotates By about thez axis. (Proof:R,(A¢) is

A . . .
exactlye 'R fort = Ag /ay.) Being unitary meanB,(Ag)" = R,(Ad) 1 = R,(—Ap).
z

= cos3|0) +€?sind 1)

Aligning B with the z axis rotates the spin about thexis. Each state is restricted to the line of latitude it
starts on, as illustrated above. For a more general rotatount a different axis, simply point thgfield in
a different direction. For example, the unitary operator

: &
Ro(y) =T

rotates by\y about the axig."To achieve this unitary transformation, 8et Bf for exactly timet = Ay/ .

Any unitary transformation on a single qubit, up to a globadge, is a rotation on the Bloch sphere about
some axis; mathematically, this is the well-known isomasph3J (2)/ + 1 = SO(3) between 2 2 unitary
matrices up to phase andk3 real rotation matrices. Hence Larmor precession, or spation, allows us
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to achieve any single qubit unitary gate. While theorelycsimple, Larmor precession can unfortunately be
inconvenient in real life, mostly because of the high fretpies involved and the susceptibility to noise. A
more practical method for achieving rotations on the Blqaiese is spin resonance, which we will describe
next.

2 Spin Resonance

Spin resonance comes in many varieties, for example ESRI@otrons) uSR (for muons), and NMR/MRI
(nuclear magnetic resonance/magnetic resonance imaging)

Assume we start with a number of randomly oriented spins.

In spin resonance, we start by turning on a large magnetitfiet Bo2, on the order okT, in order to align
spins against this large field.

In a magnetic field, electrons with spins aligned againsffitid have an energy advantage/A = 2Bh
over spins aligned with the field. Therefore, the spins Wiy reach a thermal (statistical) equilibrium
by aligning against the field to minimize energy. (This thalmrocess occurs on a slower time scale than
the Larmor precession inBfield.)

The trick is to then turn on small, oscillating magnetic fiBlek B; cosatX. Let's analyze what happens:
First we findH:

B-S

(BoS, + By cosantS,)
_ @( Bo Blcosabt>
—  2m \ Bicoswpt —Bp ’

AL = &
e
m

where we have substituted the matrix representationSfer (3 %) andS,=1(91).

SinceH depends on time, we directly substitute it into thee-dependent Schrodinger equatio'rﬁdﬂ\tm =

t
). For|w(t)) = a(t)[0) + B(t)|1) = ( ggg), we get the differential equation

g (56)) = 5 (o 25) (50)

More next time!
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