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1 Larmor Precession
Turning on a magnetic field~B, the qubit state rotates. There are two steps to understanding this process,
essentially the same steps we make to understand any quantumprocess:

1. FindĤ

2. Solve Schrödinger equation

For the second step, we first solve the “time-independent” Schrödinger equation; that is, we find energy
eigenstates

Ĥ|ψn〉 = En|ψn〉 .

The “time-dependent” Schrödinger equation

ih̄ d
dt |ψ(t)〉 = Ĥ|ψ(t)〉

has solution

|ψ(t)〉 = e−i Ĥ
h̄ t |ψ(t = 0)〉 .

Expanding|ψ(t = 0)〉 = ∑n cn|ψn〉, we get

|ψ(t)〉 = ∑
n

cne−iEnt/h̄|ψn〉 .

(This assumes that̂H is time-independent. If the Hamiltonian is itself a function of t, Ĥ = Ĥ(t), then we
must directly solve the time-dependent Schrödinger equation.)

1.1 Find ˆ�

Assume there is only potential energy, not kinetic energy. Classically,E =−~µ ·~B. Quantumly, the magnetic

moment is in fact a vectoroperator, ~̂µ = gq
2m

~̂S = − e
m
~̂S. Hence we set the quantum Hamiltonian to be

Ĥ = e
m
~̂S ·~B .

We may choose our coordinate system so~B = Bẑ; then

Ĥ = eB
m Ŝz .
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1.2 Solve Schrödinger Equation
Following the recipe we gave above, we start by finding the eigendecomposition of̂H. The eigenstates of̂H
are just those of̂Sz: |0〉 (up) and|1〉 (down). The corresponding eigenenergies areE0 = eB

2m h̄, E1 = − eB
2m h̄.

Next we solve the time-dependent Schrödinger equation. Write

|ψ(t = 0)〉 = α |0〉+ β |1〉 .

Then

|ψ(t)〉 = αe−i eB
2mt |0〉+ βei eB

2m t |1〉

∝ α |0〉+ βei eB
m t |1〉 ,

where the proportionality is up to a global phase. On the Bloch sphere,

|ψ(t = 0)〉 = cosθ
2 |0〉+sin θ

2eiϕ |1〉

evolves to

|ψ(t)〉 = cosθ
2 |0〉+sin θ

2 ei(ϕ+
eB
m t)|1〉 .

Thus the state rotates counterclockwise around thez axis, at frequencyω0 ≡
eB
m (ω0 is known as the cyclotron

frequency, since it is the same frequency with which a classical e− cycles in a magnetic field, due to the
Lorentz force).

ThereforeR̂z(∆ϕ) = e−i
Ŝz
h̄ ∆ϕ is a unitary operation which rotates by∆ϕ about thez axis. (Proof:R̂z(∆ϕ) is

exactlye−i Ĥ
h̄ t for t = ∆ϕ/ω0.) Being unitary meanŝRz(∆ϕ)† = R̂z(∆ϕ)−1 = R̂z(−∆ϕ).

x

y

z

�

θ

ϕ

|ψ〉 = cosθ
2 |0〉+ eiϕ sin θ

2 |1〉

Aligning ~B with the z axis rotates the spin about thez axis. Each state is restricted to the line of latitude it
starts on, as illustrated above. For a more general rotationabout a different axis, simply point the~B field in
a different direction. For example, the unitary operator

R̂n(∆γ) = e−i
~̂S·n̂
h̄ ∆γ

rotates by∆γ about the axis ˆn. To achieve this unitary transformation, set~B = Bn̂ for exactly timet = ∆γ/ω0.

Any unitary transformation on a single qubit, up to a global phase, is a rotation on the Bloch sphere about
some axis; mathematically, this is the well-known isomorphism SU(2)/±1∼= SO(3) between 2×2 unitary
matrices up to phase and 3×3 real rotation matrices. Hence Larmor precession, or spin rotation, allows us
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to achieve any single qubit unitary gate. While theoretically simple, Larmor precession can unfortunately be
inconvenient in real life, mostly because of the high frequencies involved and the susceptibility to noise. A
more practical method for achieving rotations on the Bloch sphere is spin resonance, which we will describe
next.

2 Spin Resonance
Spin resonance comes in many varieties, for example ESR (forelectrons),µSR (for muons), and NMR/MRI
(nuclear magnetic resonance/magnetic resonance imaging).

Assume we start with a number of randomly oriented spins.

In spin resonance, we start by turning on a large magnetic field~B = B0ẑ, on the order ofkT , in order to align
spins against this large field.

In a magnetic field, electrons with spins aligned against thefield have an energy advantage of∆E = e
m Bh̄

over spins aligned with the field. Therefore, the spins will slowly reach a thermal (statistical) equilibrium
by aligning against the field to minimize energy. (This thermal process occurs on a slower time scale than
the Larmor precession in a~B field.)

The trick is to then turn on small, oscillating magnetic field~B = B1cosω0tx̂. Let’s analyze what happens:

First we findĤ:

Ĥ(t) = e
m
~B ·~̂S

= e
m(B0Ŝz + B1cosω0tŜx)

= h̄e
2m

(

B0 B1 cosω0t
B1 cosω0t −B0

)

,

where we have substituted the matrix representations forŜz = h̄
2

(

1 0
0 −1

)

andŜx = h̄
2

(

0 1
1 0

)

.

SinceĤ depends on time, we directly substitute it into thetime-dependent Schrödinger equationih̄ d
dt |ψ〉 =

Ĥ|ψ〉. For |ψ(t)〉 = α(t)|0〉+ β (t)|1〉 =
(

α(t)
β(t)

)

, we get the differential equation

ih̄ d
dt

(

α(t)
β(t)

)

= eh̄
2m

(

B0 B1 cosω0t
B1 cosω0t −B0

)(

α(t)
β(t)

)

.

More next time!
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