1 Stern-Gerlach Apparatus

A Stern-Gerlach device is simply a magnet set up to generate a particular inhomogeneous \vec{B} field.

When a particle with spin state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ is shot through the apparatus from the left, its spin-up portion is deflected upward, and its spin-down portion downward. The particle's spin becomes entangled with its position! Placing detectors to intercept the outgoing paths therefore measures the particle's spin.

Why does this work? We'll give a semiclassical explanation – mixing the classical $\vec{F} = m\vec{a}$ and the quantum $H\psi = E\psi$ – which is quite wrong, but gives the correct intuition. [See Griffith's § 4.4.2, pp. 162-164 for a more complete argument.] Now the potential energy due to the spin interacting with the field is

$$E = -\vec{\mu} \cdot \vec{B}$$
,

so the associated force is

$$\vec{F}_{
m spin} = -\vec{\nabla}E = \vec{\nabla}(\vec{\mu}\cdot\vec{B})$$

At the center $\vec{B} = B(z)\hat{z}$, with $\frac{\partial B}{\partial z} < 0$, so $\vec{F} = \vec{\nabla}(\mu_z B(z)) = \mu_z \frac{\partial B}{\partial z}\hat{z}$. The magnetic moment $\vec{\mu}$ is related to spin \vec{S} by $\vec{\mu} = \frac{gq}{2m}\vec{S} = -\frac{e}{m}\vec{S}$ for an electron. Hence

$$\vec{F} = rac{e}{m} |rac{\partial B}{\partial z}| S_z \hat{z}$$
;

if the electron is spin up, the force is upward, and if the electron is spin down, the force is downward.

2 Initialize a Qubit

• How can we create a beam of qubits in the state $|\psi\rangle = |0\rangle$? Pass a beam of spin- $\frac{1}{2}$ particles with randomly oriented spins through a Stern-Gerlach apparatus oriented along the *z* axis. Intercept the downward-pointing beam, leaving the other beam of $|0\rangle$ qubits.

Note that we *measure* the spin when we intercept an outgoing beam – after this measurement, the experiment is probabilistic and not unitary.

• How can we create a beam of qubits in the state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$? First find the point on the Bloch sphere corresponding to $|\psi\rangle$. That is, write

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \cos \frac{\theta}{2} |0\rangle + e^{i\varphi} \sin \frac{\theta}{2} |1\rangle$$

(up to a phase), where

$$\tan \frac{\theta}{2} = \left|\frac{\beta}{\alpha}\right| \qquad e^{i\varphi} = \frac{\beta/|\beta|}{\alpha/|\alpha|}$$

The polar coordinates θ , φ determine a unit vector $\hat{n} = \cos \varphi \sin \theta \hat{x} + \sin \varphi \sin \theta \hat{y} + \cos \theta \hat{z}$. Now just point the Stern-Gerlach device in the corresponding direction on the Bloch sphere, and intercept one of the two outgoing beams. That is, a Stern-Gerlach device pointed in direction \hat{n} measures $S_{\hat{n}} = \hat{n} \cdot \hat{S}$.

• How can we implement a unitary (deterministic) transformation? We need to evolve the wave function according to a Hamiltonian \hat{H} . Then

$$|\psi(t)\rangle = e^{-\frac{i}{\hbar}\hat{H}t}|\psi(0)\rangle$$

solves the Schrödinger equation (if \hat{H} is time-independent). In the next lecture we will show how to accomplish an arbitrary single-qubit unitary gate (a rotation on the Bloch sphere) by applying a precise magnetic field for some precise amount of time: Larmor precession.