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Fall 2003 Lecture 10

Spin Algebra

“Spin” is the intrinsic angular momentum associated with fundamental particles. To understand spin, we
must understand the quantum mechanical properties of angular momentum. The spin is denoted by~S.

In the last lecture, we established that:

~S = Sxx̂ + Syŷ+ Szẑ

S2 = S2
x + S2

y + S2
z

[Sx,Sy] = i~Sz

[Sy,Sz] = i~Sx

[Sz,Sx] = i~Sy

[S2,Si] = 0 for i = x,y,z

BecauseS2 commutes withSz, there must exist an orthonormal basis consisting entirelyof simultaneous
eigenstates ofS2 andSz. (We proved that rule in a previous lecture.)

Since each of these basis states is an eigenvector of bothS2 andSz, they can be written with the notation
∣

∣a,b
〉

, wherea denotes the eigenvalue ofS2 andb denotes the eigenvalue ofSz.

Now, it will turn out thata andb can’t be just any numbers. The word ”quantum” in ”quantum mechanics”
refers to the fact that many operators have ”quantized” eigenvalues – eigenvalues that can only take on a
limited, discrete set of values.

(In the example of the position and momentum, from previous lectures, the position and momentum eigen-
values werenot discrete or quantized in this sense; they were continuous. However, the energy of the
”particle on a ring” was quantized.)

Question: What valuesa andb can have?

We’ll give away the answer first, and most of the lecture will be spent proving this answer:

Answer:

a can equal~2n(n + 1), wheren is an integer or half of an integer Given thata = ~
2n(n + 1),b can equal

~(−n),~(−n+1), . . .~(n−2),~(n−1),~n.

Now, let’s prove it.

First, define the “raising” and “lowering” operatorsS+ andS−: S+ ≡ Sx + iSy, S− ≡ Sx − iSy

Let’s find the commutators of these operators:

[Sz,S+] = [Sz,Sx]+ i[Sz,Sy] = i~Sy + i(−i~Sx) = ~(Sx + iSy) = ~S+

Therefore[Sz,S+] = ~S+. Similarly, [Sz,S−] = −~S−.
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Now actS+ on
∣

∣a,b
〉

. Is the resulting state still an eigenvector ofS2? If so, does it have the same eigenvalues
a andb, or does it have new ones?

First, considerS2:

What isS2(S+

∣

∣a,b
〉

)? Since[S2,S+] = 0, theS2 eigenvalue is unchanged:S2(S+

∣

∣a,b
〉

) = S+(S2
∣

∣a,b
〉

) =
S+(a

∣

∣s,m
〉

) = a(S+

∣

∣a,b
〉

). The new state is also an eigenstate ofS2 with eigenvaluea.

Now, considerSz:

What isSz(S+

∣

∣a,b
〉

)? Here,[Sz,S+] = ~S+(6= 0). That is,SzS+−S+Sz = ~S+. SoSzS+ = S+Sz +~S+, and:

Sz(S+

∣

∣a,b
〉

) = (S+Sz +~S+)
∣

∣a,b
〉

= (S+b+~S+)
∣

∣a,b
〉

Sz(S+

∣

∣a,b
〉

) = (b+~)S+

∣

∣a,b
〉

ThereforeS+

∣

∣a,b
〉

is an eigenstate ofSz. But S+ raises theSz eigenvalue of
∣

∣a,b
〉

by ~ ! S+ changes the
state

∣

∣a,b
〉

to
∣

∣a,b+~
〉

.

but S+ raises theSz eigenvalue of
∣

∣s,m
〉

by ~ !

Similarly, Sz(S−
∣

∣s,m
〉

) = (b−~)(S−
∣

∣a,b
〉

) (Homework.) SoS− lowers the eigenvalue ofSz by ~.

Now, remember that~S is like an angular momentum.S2 represents the square of the magnitude of the
angular momentum; andSz represents the z-component.

But suppose you keep hitting
∣

∣s,m
〉

with S+. The eigenvalue ofS2 will not change, but the eigenvalue ofSz

keeps increasing. If we keep doing this enough, the eigenvalue ofSz will grow larger than the square root of
the eigenvalue ofS2. That is, the z-component of the angular momentum vector will in some sense be larger
than the magnitude of the angular momentum vector.

That doesn’t make a lot of sense . . . perhaps we made a mistake somewhere? Or a fault assumption? What
unwarranted assumption did we make?

Here’s our mistake: we forgot about the ket 0, whichacts like an eigenvector of any operator, with any
eigenvalue.

I don’t mean the ket
∣

∣0
〉

; I mean the ket 0. For instance, if we were dealing with qubits, any ket could be
represented as theα

∣

∣0
〉

+β
∣

∣1
〉

. What ket do you get if you set bothα andβ to 0? You get the ket 0. Which
is not the same as

∣

∣0
〉

.

Remember in our proof above when we concluded thatSz(S+

∣

∣a,b
〉

) = (b+~)S+

∣

∣a,b
〉

? Well, if S+

∣

∣a,b
〉

=
0, then this would be true in a trivial way. That is,Sz ×0 = (b+~)×0 = 0. But that doesn’t mean that we
have succesfully usedS+ to increase the eigenvalue ofSz by ~. All we’ve done is annihilate our ket.

So the resolution to our dilemma must be that if you keep hitting
∣

∣a,b
〉

with S+, you must eventually
get 0. Let

∣

∣a,btop(a)
〉

be the last ket we get before we reach 0. (btop(a) is the ”top” value ofb that
we can reach, for this value ofa.) We expect thatbtop(a) is no bigger than the square root ofa. Then
Sz

∣

∣a,btop(a)
〉

= btop(a)
∣

∣a,btop(a)
〉

.

Similarly, there must exist a ”bottom” state
∣

∣a,bbot(a)
〉

, such thatS−
∣

∣a,bbot(a)
〉

= 0. AndSz
∣

∣a,bbot(a)
〉

=
bbot(a)

∣

∣a,bbot(a)
〉

.

Now consider the operatorS+S− = (Sx + iSy)(Sx − iSy). Multiplying out the terms and using the commuta-
tion relations, we get
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S+S− = S2
x + S2

y − i(SxSy −SySx) = S2−S2
z +~Sz

Hence

S2 = S+S− + S2
z −~Sz (1)

Similarly

S2 = S−S+ + S2
z +~Sz (2)

Now actS2 on
∣

∣a,btop(a)
〉

and
∣

∣a,bbot(a)
〉

.

S2
∣

∣a,btop(a)
〉

= (S−S+ + S2
z +~Sz)

∣

∣a,btop(a)
〉

by (2)

= (0+ btop(a)2 +~btop(a))
∣

∣a,btop(a)
〉

S2
∣

∣a,btop(a)
〉

= btop(a)(btop(a)+~)
∣

∣a,btop(a)
〉

Similarly,

S2
∣

∣a,bbot(a)
〉

= (S+S− + S2
z −~Sz)

∣

∣a,bbot(a)
〉

by (1)

= (0+ bbot(a)2−~bbot(a))
∣

∣a,bbot(a)
〉

S2
∣

∣a,bbot(a)
〉

= ~bbot(a)(bbot(a)−~)
∣

∣a,bbot(a)
〉

So the first ket hasS2 eigenvaluea = btop(a)(btop(a) + ~), and the second ket hasS2 eigenvaluea =

~
2bbot(a)(bbot(a)−~).

But we know that the action ofS+ andS− on
∣

∣a,b
〉

leaves the eigenvalue ofS2 unchanged. An we got from
∣

∣a,btop(a)
〉

to
∣

∣a,bbot(a)
〉

by applying the lowering operator many times. So the value ofa is the same for
the two kets.

Thereforebtop(a)(btop(a)+~) = bbot(a)(bbot(a)−~).

This equation has two solutions:bbot(a) = btop(a)+~, andbbot(a) = −btop(a).

But bbot(a) must be smaller thanbtop(a), so only the second solution works. Thereforebbot(a) = −btop(a).

Henceb, which is the eigenvalue ofSz, ranges from−btop(a) to btop(a). Furthermore, sinceS− lowers
this value by~ each time it is applied, these two values must differ by an integer multiple of~. Therefore
btop(a)− (−btop(a)) = N~ for someN. Sobtop(a) = N

2 ~.

Hencebtop(a) is an integer or half integer multiple of~.

Now we’ll define two variables calleds andm, which will be very important in our notation later on.

Let’s defines ≡
btop(a)

~
. Thens = N

2 , sos can be any integer or half integer.

And let’s definem ≡ b
~
. Thenm ranges from−s to s. For instance, ifbtop(a) = f rac32~, thens = 3

2 andm
can equal−3

2,−
1
2, 1

2, or 3
2.
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Then:

a = ~
2s(s+1)b = ~m

Sincea is completely determined bys, andb is completely determined bym, we can label our kets as
∣

∣s,m
〉

(instead of
∣

∣a,b
〉

) without any ambiguity. For instance, the ket
∣

∣s,m
〉

=
∣

∣2,1
〉

is the same as the ket
∣

∣a,b
〉

=
∣

∣6~
2,~

〉

.

In fact, all physicists label spin kets withs andm, not witha andb. (The letterss andm are standard notation,
but a andb are not.) We will use the standard

∣

∣s,m
〉

notation from now on.

For each value ofs, there is a family of allowed values ofm, as we proved. Here they are:

(table omitted for now)

Fact of Nature: Every fundamental particle has its own special value of “s” and can haveno other. “m” can
change, but “s” does not.

If s is an integer, than the particle is a boson. (Like photons;s = 1)

If s is a half-integer, then the particle is a fermion. (like electrons,s = 1
2)

So, which spins is best for qubits? Spin12 sounds good, because it allows for two states:m = −1
2 and

m = 1
2.

The rest of this lecture will only concern spin-1
2 particles. (That is, particles for whichs = 1

2).

The two possible spin states
∣

∣s,m
〉

are then
∣

∣

1
2, 1

2

〉

and
∣

∣

1
2,−1

2

〉

.

Since thes quantum number doesn’t change, we only care aboutm = ±1
2.

Possible labels for the two states (m = ±1
2):

∣

∣

1
2, 1

2

〉 ∣

∣

1
2,−1

2

〉

∣

∣+
〉 ∣

∣−
〉

∣

∣0
〉 ∣

∣1
〉

All of these labels are frequently used, but let’s stick with
∣

∣0
〉

,
∣

∣1
〉

, since that’s the convention in this class.

Remember:
∣

∣0
〉

=
∣

∣ ↑
〉

= state representing ang. mom. w/ z-comp. up
∣

∣1
〉

=
∣

∣ ↓
〉

= state representing ang. mom. w/ z-comp. down

So we have derived the eigenvectors and eigenvalues of the spin for a spin-12 system, like an electron or
proton:
∣

∣0
〉

and
∣

∣1
〉

are simultaneous eigenvectors ofS2 andSz.
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S2
∣

∣0
〉

= ~
2s(s+1)

∣

∣0
〉

= ~
2 1
2
(
1
2

+1)
∣

∣0
〉

=
3
4

~
2
∣

∣0
〉

S2
∣

∣1
〉

= ~
2s(s+1)

∣

∣1
〉

=
3
4

~
2
∣

∣1
〉

Sz
∣

∣0
〉

= ~m
∣

∣0
〉

=
1
2

~
∣

∣0
〉

Sz
∣

∣1
〉

= ~m
∣

∣1
〉

= −
1
2

~
∣

∣0
〉

Results of measurements:

S2 → 3
4~

2,Sz → +~

2 ,−~

2

SinceSz is a Hamiltonian operator,
∣

∣0
〉

and
∣

∣1
〉

from an orthonormal basis that spans the spin-1
2 space,

which is isomorphic toC ∈.

So the most general spin12 state is
∣

∣Ψ
〉

= α
∣

∣0
〉

+ β
∣

∣1
〉

=

(

α
β

)

.

Question: How do we represent the spin operators(S2,Sx,Sy,Sz) in the 2-d basis of theSz eigenstates
∣

∣0
〉

and
∣

∣1
〉

?

Answer: They are matrices. Since they act on a two-dimensional vectors space, they must be 2-d matrices.
We must calculate their matrix elements:

S2 =
s2
11 s2

12
s2
21 s2

22
,Sz =

sz11 sz12
sz21 sz22

,Sx =
sx11 sx12
sx21 sx22

, etc. (Sy)

CalculateS2 matrix: We must sandwichS2 between all possible combinations of basis vector. (This isthe
usual way to construct a matrix!)

s2
11 =

〈

0
∣

∣S2
∣

∣0
〉

=
〈

0
∣

∣

3
4

~
2
∣

∣0
〉

=
3
4

~
2

s2
12 =

〈

0
∣

∣S2
∣

∣1
〉

=
〈

0
∣

∣

3
4

~
2
∣

∣1
〉

= 0

s2
21 =

〈

1
∣

∣S2
∣

∣0
〉

=
〈

1
∣

∣

3
4

~
2
∣

∣0
〉

= 0

s2
22 =

〈

1
∣

∣S2
∣

∣1
〉

=
〈

1
∣

∣

3
4

~
2
∣

∣1
〉

=
3
4

~
2

SoS2 = 3
4~

2

(

1 0
0 1

)
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Find theSz matrix:

s2
z11 =

〈

0
∣

∣Sz
∣

∣0
〉

=
〈

0
∣

∣ +
~

2

∣

∣0
〉

=
~

2

s2
z12 =

〈

0
∣

∣Sz
∣

∣1
〉

=
〈

0
∣

∣ −
~

2

∣

∣1
〉

= 0

s2
z21 =

〈

1
∣

∣Sz
∣

∣0
〉

=
〈

1
∣

∣ +
~

2

∣

∣0
〉

= 0

s2
z22 =

〈

1
∣

∣Sz

∣

∣1
〉

=
〈

1
∣

∣ −
~

2

∣

∣1
〉

= −
~

2

SoSz = ~

2

(

1 0
0 −1

)

Find Sx matrix: This is more difficult

What isSx11 =
〈

0
∣

∣Sx
∣

∣0
〉

?
∣

∣0
〉

is not an eigenstate ofSz, so it’s not trivial.

Use raising and lowering operators:S± = Sx ± iSy

⇒ Sx = 1
2(S+ + S−),Sy = 1

2i(S+ −S−)

⇒ Sx11 =
〈

0
∣

∣

1
2(S+ + S−)

∣

∣0
〉

⇒ S+

∣

∣0
〉

= 0, since
∣

∣0
〉

is the highestSz state.

But what isS−
∣

∣0
〉

? SinceS− is the lowering operator, we know thatS−
∣

∣0
〉

∝
∣

∣1
〉

. That isS−
∣

∣0
〉

= A−

∣

∣1
〉

for some complex numberA− which we have yet to determine. Similarly,S+

∣

∣1
〉

= A+

∣

∣0
〉

.

Question: What isA−?

(This is a homework problem.)

Answer:

A+ = ~
√

s(s+1)−m(m +1)→ S+

∣

∣s,m
〉

= A+

∣

∣s,m +1
〉

A− = ~
√

s(s+1)−m(m−1)→ S−
∣

∣s,m
〉

= A−

∣

∣s,m−1
〉

So

S+

∣

∣0
〉

= 0

S+

∣

∣1
〉

= ~

√

1
2
(
1
2

+1)− (−
1
2
)(−

1
2

+1)
∣

∣0
〉

= ~
∣

∣0
〉

S−
∣

∣0
〉

= ~

√

1
2
(
1
2

+1)− (
1
2
)(

1
2
−1)

∣

∣1
〉

= ~
∣

∣1
〉

S−
∣

∣1
〉

= 0

⇒ Sx11 = 1
2

〈

0
∣

∣ (S+ + S−)
∣

∣0
〉

= 1
2

〈

0
∣

∣ [S+

∣

∣0
〉

+ S−
∣

∣0
〉

]
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Sx11 =
1
2

〈

0
∣

∣ [0+~
∣

∣1
〉

] = 0

Sx12 =
〈

0
∣

∣

1
2
(S+ + S−)

∣

∣1
〉

=
1
2

〈

0
∣

∣ [~
∣

∣0
〉

+0] =
~

2

Sx21 =
〈

1
∣

∣

1
2
(S+ + S−)

∣

∣0
〉

=
1
2

〈

1
∣

∣ [0+~
∣

∣1
〉

] =
~

2

Sx22 =
〈

1
∣

∣

1
2
(S+ + S−)

∣

∣1
〉

=
1
2

〈

1
∣

∣ [~
∣

∣0
〉

+0] = 0

SoSx = ~

2

(

0 1
1 0

)

Find Sy matrix: UseSy = 1
2i(S+ −S−)

Homework: find theSy11,Sy12,Sy21,Sy22 matrix elements.

Answer: Sy = ~

2

(

0 −i
i 0

)

Define

σ0 =

(

1 0
0 1

)

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0
0 −1

)

S2 = 3
4~

2σ0,Sx = ~

2σ1,Sy = ~

2σ2,Sz = ~

2σ3

σ0,σ1,σ2,σ3 are called the Pauli Spin Matrices. They are very important for understanding the behavior of
two-level systems.
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