C/CS/Phys 191 Qubits, Measurements 8/26/03
Fall 2003 Lecture 1

1 Course Philosophy / Outline

Over the last decade the there have been foundational geogtethe interface of quantum physics and
computer science. The emerging areas of quantum computgtiantum cryptography and quantum infor-
mation theory all rely on the counter-intuitive informatiprocessing properties of quantum systems. There
has been a growing feeling among researchers in these figltthe quantum computation and information
perspective provides a new and more conceptual way of intiod students to quantum mechanics. The
first part of this course will provide a brief introductiongome of the more conceptual aspects of quantum
phusics from this new point of view. There are four main préps of quantum systems that are useful in
guantum computation, cryptography and information:

* Interference » Superposition » Entanglement * Measurémen

In particular, the detailed study of entanglement is thetrimoportant point of departure from more tradi-
tional approaches to the subject. For example, quantum atatiign derives its power from the fact that the
description of the state of an n-particle quantum systerwgexponentially in n. This enormous informa-
tion capacity is not easy to access, since any measuremémt sfystem only yields n pieces of classical
information. Thus the main challenge in the field of quantugodthms is to manipulate the exponential
amount of information in the quantum state of the system,thad extract some crucial pieces via a final
measurement.

Quantum cryptography relies on a fundamental property ahtjum measurements: that they inevitably

disturb the state of the measured system. Thus if Alice aral\Bish to communicate secretly, they can

detect the presence of an eavesdropper Eve by using clesimben quantum states and testing them to
check whether they were disturbed during transmission.

1.1 Young’s double-slit experiment
Let g1 (X) € € be the amplitude if only slit 1 is open. Then the probabiligndity of measuring a photon at
xis Py(X) = |1(X)[2. Let gr(x) be the amplitude if only slit 2 is ope®,(x) = |W2(X)[2.

P12(X) = %wl(x) + \%I,UQ(X) is the amplitude if both slits are ope®;o(x) = |1(X) + Yo (X)[2. The two
complex numberg; (x) and gk (x) can cancel each other out — destructive interference.

But how can a single particle that went through the first slibw that the other slit is open? In quantum
mechanics, this question is not well-posed. Particles dohawe trajectories, but rather take all paths
simultaneously. This is a key to the power of quantum contfmurta

1.2 Qu]oits — Naive introduction

The basic entity of quantum information is a qubit (pronadtcue-bit”), or a quantum bit. Consider the
electron in a hydrogen atom. It can be in its ground statedns orbital) or in an excited state. If this were
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a classical system, we could store a bit of information instag¢e of the electron: ground = 0, excited = 1.
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In general, since the electron is a quantum system, it is iimead superposition of the ground and excited
state — it is in the ground state (0) with probability ampléua € € and in the excited state (1) with
probability amplitude3 € %. Itis as though the electron “does not make up its mind” ashilvof the 2
classical states it is in. Such a 2-state quantum systenflesl Gaqubit, and its state can be written as a unit
(column) vector(3) € 2. In Dirac notation, this may be written as:

|¢’>=0’|0>+B|1> a,e% and |a?+|B2=1

The Dirac notation has the advantage that the it labels this bactors explicitly. This is very convenient
because the notation expresses both that the state of titeésjalvector, and that it is data (0 or 1) to be
processed. (The\0>, 1>} basis is called the standard or computational basis.)

This linear superpositiofy) = a|0) + B|1) is part of the private world of the electron. For us to know
the electron’s state, we must make a measurement. Measyrinm the {|0), |1) } basis yields0) with

probability |a| %, and|1) with probability | 8] %.

One important aspect of the measurement process is thaeis éhe state of the qubit: the effect of the
measurement is that the new state is exactly the outcomesahéfasurement. l.e., if the outcome of the
measurement o)) = a|0) + 3|1) yields |0), then following the measurement, the qubit is in state
This implies that you cannot collect any additional infotioa abouta, 3 by repeating the measurement.

More generally, we may choose any orthogonal basis and measure the qubit in it. To do this, we
rewrite our state in that basi$y) = a’|v) + B|v*). The outcome is with probability la’|?, and |[v)

with probability |3’| 2. If the outcome of the measurement lap) yields |v), then as before, the the qubit is
then in statgv) .

1.2.1 Measurement examplel.

Q: We measuréyy) = a|0) +|1) inthe|v),
of measuringv) ?

vt) basis, wherév) = a|0) +-b|1). What is the probability

A: First let's do the simpler case= b= % so|v) = %(\O> +1))=]+).

See Figur€ll. We expresg) inthe|+),| — ) basis:
@) = al0)+B|1)
= a1+ ) 4B+ ~|-)

= H(@+p)|+)+@=p)|-)) -

|
S

Therefore the probability of measuriig- ) is |%(a + B)|? = |a + BJ?/2. The probability of measuring
| - is |a + B|?/2. We will do the general case il ELB.1.
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1.3 Examples of Qubits

Photon Polarization:

There is a qubit associated with photon - its polarizatioaca® that a photon moving along the z-axis has
an associated electric field in the x-y plane. The frequemtiyeofield is determined by the frequency of the
photon. However, this still leaves the x-y components ofdleetric field unspecified. The 2-dimensional
quantity specifying this field is the polarization of the pdv@ The polarization of a photon can be measured
by using a polaroid or a calcite crystal. A polaroid sheeitébly oriented) transmits x-polarized photons
and absorbs y-polarized photons. Thus a photon that is ipergasition|@) = a|x) + B|y) is transmitted
with probability |a|2. If the photon now encounters another polariod sheet wétstime orientation, then it
is transmitted with probability 1. On the other hand, if teeand polaroid sheet has its axes crossed at right
angles to the first one, then if the photon is transmitted byfitist polaroid, then it is definitely absorbed by
the second sheet. An interesting experiment may be pertbbyénterposing a third polariod sheet at a 45
degree angle between the first two. Now a photon that is trieshby the first sheet makes it through the
next two with probability ¥4.

Proof: Indeed, the polarization of light after the first filter ||@> The probability this light passes the
second filter ig (0| %(\O> +11)))|? = cog Z = 1/2. If light passes the second filter, its polarization is

\%(\0} +1)). Its probability of passing the third filter is th¢(1\i[2(\0> +1)|1)2=1/2.0
Spins.

Like photon polarization, the spin of a (spin-1/2) partidexactly a two-state system. More next time!

1.3.1 Measurement examplell.

The notation(v| (“bra v") denotes a row vector, the conjugate-transposg)obr V). For example{0| =
(10)and(1| = (o 1). More generally,

(Wl =(§)" =(ap)=a(©+B .
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The Dirac notation can be handy. For example, let
‘V1> :a1|0> +b1|1>, |V2> :a2\0> +b2‘1> .

Then(vi| V) (shorthand for(vi| |v2)) is a matrix product of the % 2 matrix (vi| and the 2x 1 matrix
|v2), or just a scalar:

(V| v2) = (a bn) (52) = @de + by, .

(V1| V2) = (vo|v1) is an inner product. Note thd0|0) = (1|1) =1 and(0|1) = (1|0) = 0. Thus the
above equation could have been expanded,

(va| v2) = (81(0] + b (1] )(22[0) +b2[1))
= z?la2<0| 0> + Elb2<011> + 61a3<1\ 0> + 51b2<l‘ l>
=aay-1+aihy-0+braz-0+biby-1
— a8y + by

In this notation,a = (0| ), B = (1| /). The normalization conditiofa|?+ |32 = 1 is

1=laf*+|p* = aa+Bp
= (W[ 0)(0[¢) + (W|1)(1]w)
= (@[ (|0)(0]+[1){2)[)
= (yly) .
The last equality above follows sing@) (0| = ($2), |1)(1] = (32), s0|0)(0| + |1)(1] is the 2x 2 identity
matrix. (This trick is important enough to have its own nathe,“resolution of the identity.”)
In the next lecture, we will introduce tensor product spaedwere the advantages of this notation increase.

With the new notation, it is simple to solve the general cesth® question asked I 81.2.1. Recall =
al0) +b|1) and choosév+) = b|0) — a]1). Indeed,(v|v+) = ab—ba=0.

W) = (W) e
= a(M{MO)+ V) (vH10) + BV (D + V) (vH 1)
a(vi0) + BVIL)Y) + (@ (v*10) + B 1) V)

ad+ B)v) + (ab+Ba)v’) .

—~

The probability of measuringy) in a measurement in thev* basis is therefore

(V) [? = |aa+ Bl .
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